相对拓扑coHochschild同调的计算

IF 0.5 4区 数学
Sarah Klanderman
{"title":"相对拓扑coHochschild同调的计算","authors":"Sarah Klanderman","doi":"10.1007/s40062-022-00312-z","DOIUrl":null,"url":null,"abstract":"<div><p>Hess and Shipley defined an invariant of coalgebra spectra called topological coHochschild homology, and Bohmann–Gerhardt–Høgenhaven–Shipley–Ziegenhagen developed a coBökstedt spectral sequence to compute the homology of <span>\\(\\mathrm {coTHH}\\)</span> for coalgebras over the sphere spectrum. We construct a relative coBökstedt spectral sequence to study <span>\\(\\mathrm {coTHH}\\)</span> of coalgebra spectra over any commutative ring spectrum <i>R</i>. Further, we use algebraic structures in this spectral sequence to complete some calculations of the homotopy groups of relative topological coHochschild homology.</p></div>","PeriodicalId":636,"journal":{"name":"Journal of Homotopy and Related Structures","volume":"17 3","pages":"393 - 417"},"PeriodicalIF":0.5000,"publicationDate":"2022-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Computations of relative topological coHochschild homology\",\"authors\":\"Sarah Klanderman\",\"doi\":\"10.1007/s40062-022-00312-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Hess and Shipley defined an invariant of coalgebra spectra called topological coHochschild homology, and Bohmann–Gerhardt–Høgenhaven–Shipley–Ziegenhagen developed a coBökstedt spectral sequence to compute the homology of <span>\\\\(\\\\mathrm {coTHH}\\\\)</span> for coalgebras over the sphere spectrum. We construct a relative coBökstedt spectral sequence to study <span>\\\\(\\\\mathrm {coTHH}\\\\)</span> of coalgebra spectra over any commutative ring spectrum <i>R</i>. Further, we use algebraic structures in this spectral sequence to complete some calculations of the homotopy groups of relative topological coHochschild homology.</p></div>\",\"PeriodicalId\":636,\"journal\":{\"name\":\"Journal of Homotopy and Related Structures\",\"volume\":\"17 3\",\"pages\":\"393 - 417\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2022-08-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Homotopy and Related Structures\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s40062-022-00312-z\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Homotopy and Related Structures","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s40062-022-00312-z","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

Hess和Shipley定义了一个称为拓扑coHochschild同调的协代数谱不变量,Bohmann-Gerhardt-Høgenhaven-Shipley-Ziegenhagen开发了一个coBökstedt谱序列来计算球谱上的协代数\(\mathrm {coTHH}\)的同调性。构造了一个相对coBökstedt谱序列来研究任意交换环谱r上的协代数谱\(\mathrm {coTHH}\),并利用该谱序列中的代数结构完成了相对拓扑coHochschild同调的同伦群的计算。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Computations of relative topological coHochschild homology

Hess and Shipley defined an invariant of coalgebra spectra called topological coHochschild homology, and Bohmann–Gerhardt–Høgenhaven–Shipley–Ziegenhagen developed a coBökstedt spectral sequence to compute the homology of \(\mathrm {coTHH}\) for coalgebras over the sphere spectrum. We construct a relative coBökstedt spectral sequence to study \(\mathrm {coTHH}\) of coalgebra spectra over any commutative ring spectrum R. Further, we use algebraic structures in this spectral sequence to complete some calculations of the homotopy groups of relative topological coHochschild homology.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Homotopy and Related Structures
Journal of Homotopy and Related Structures Mathematics-Geometry and Topology
自引率
0.00%
发文量
0
期刊介绍: Journal of Homotopy and Related Structures (JHRS) is a fully refereed international journal dealing with homotopy and related structures of mathematical and physical sciences. Journal of Homotopy and Related Structures is intended to publish papers on Homotopy in the broad sense and its related areas like Homological and homotopical algebra, K-theory, topology of manifolds, geometric and categorical structures, homology theories, topological groups and algebras, stable homotopy theory, group actions, algebraic varieties, category theory, cobordism theory, controlled topology, noncommutative geometry, motivic cohomology, differential topology, algebraic geometry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信