一种高效环保的液化生物基多元醇:液化温度和催化剂浓度的优化及其在硬质聚氨酯泡沫中的应用

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
C. Patel, Nikhil R Dhore, Amit A. Barot, Raju V. S. N. Kothapalli
{"title":"一种高效环保的液化生物基多元醇:液化温度和催化剂浓度的优化及其在硬质聚氨酯泡沫中的应用","authors":"C. Patel, Nikhil R Dhore, Amit A. Barot, Raju V. S. N. Kothapalli","doi":"10.1177/02624893211017271","DOIUrl":null,"url":null,"abstract":"Aiming towards the liquefaction of paddy straw was accumulation as well as providing a technically viable route leading to preservation of the natural resources and environment, the paddy straw was chemically liquefied. Paddy straw were liquefied into bio-based polyol in the presence of castor oil and blend of castor and karanja oil as depolymerizing agent and P-Toluene sulfonic acid as catalyst. Liquefied product was characterized by chemical as well as analytical techniques. The agricultural waste base paddy straw was eventually converted into polymeric precursor (polyol) monomer with nearly 80 to 95% yield by employing 2% catalyst concentration and at optimized temperature of 180°C. Synthesized polyol can be utilized further in formulating high quality rigid polyurethane foams. The foams were characterized in terms of their physical, mechanical, thermal and morphological properties. All foams exhibit good compressive strengths and thermal stability. Thermal conductivity of foams varied between 0.012 and 0.023 Kcal/mh°C, with the lowest being of foam from liquefied (LP), making it suitable for utilization as an insulation material.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2021-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1177/02624893211017271","citationCount":"2","resultStr":"{\"title\":\"An efficient and environment friendly bio-based polyols through liquefaction: Liquefaction temperature and catalyst concentration optimization and utilized for rigid polyurethane foams\",\"authors\":\"C. Patel, Nikhil R Dhore, Amit A. Barot, Raju V. S. N. Kothapalli\",\"doi\":\"10.1177/02624893211017271\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Aiming towards the liquefaction of paddy straw was accumulation as well as providing a technically viable route leading to preservation of the natural resources and environment, the paddy straw was chemically liquefied. Paddy straw were liquefied into bio-based polyol in the presence of castor oil and blend of castor and karanja oil as depolymerizing agent and P-Toluene sulfonic acid as catalyst. Liquefied product was characterized by chemical as well as analytical techniques. The agricultural waste base paddy straw was eventually converted into polymeric precursor (polyol) monomer with nearly 80 to 95% yield by employing 2% catalyst concentration and at optimized temperature of 180°C. Synthesized polyol can be utilized further in formulating high quality rigid polyurethane foams. The foams were characterized in terms of their physical, mechanical, thermal and morphological properties. All foams exhibit good compressive strengths and thermal stability. Thermal conductivity of foams varied between 0.012 and 0.023 Kcal/mh°C, with the lowest being of foam from liquefied (LP), making it suitable for utilization as an insulation material.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2021-05-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1177/02624893211017271\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1177/02624893211017271\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/02624893211017271","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 2

摘要

为了解决水稻秸秆的液化积累问题,并为保护自然资源和环境提供一条技术可行的途径,对水稻秸秆进行了化学液化。以蓖麻油和蓖麻油为解聚剂,对甲苯磺酸为催化剂,将稻草液化成生物基多元醇。通过化学和分析技术对液化产物进行了表征。通过使用2%的催化剂浓度和180°C的优化温度,农业废弃物基稻草最终转化为聚合物前体(多元醇)单体,产率接近80-95%。合成的多元醇可进一步用于配制高质量的硬质聚氨酯泡沫。从物理、机械、热学和形态等方面对泡沫进行了表征。所有泡沫都表现出良好的压缩强度和热稳定性。泡沫的热导率在0.012和0.023 Kcal/mh°C之间变化,其中液化(LP)的泡沫热导率最低,因此适合用作隔热材料。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An efficient and environment friendly bio-based polyols through liquefaction: Liquefaction temperature and catalyst concentration optimization and utilized for rigid polyurethane foams
Aiming towards the liquefaction of paddy straw was accumulation as well as providing a technically viable route leading to preservation of the natural resources and environment, the paddy straw was chemically liquefied. Paddy straw were liquefied into bio-based polyol in the presence of castor oil and blend of castor and karanja oil as depolymerizing agent and P-Toluene sulfonic acid as catalyst. Liquefied product was characterized by chemical as well as analytical techniques. The agricultural waste base paddy straw was eventually converted into polymeric precursor (polyol) monomer with nearly 80 to 95% yield by employing 2% catalyst concentration and at optimized temperature of 180°C. Synthesized polyol can be utilized further in formulating high quality rigid polyurethane foams. The foams were characterized in terms of their physical, mechanical, thermal and morphological properties. All foams exhibit good compressive strengths and thermal stability. Thermal conductivity of foams varied between 0.012 and 0.023 Kcal/mh°C, with the lowest being of foam from liquefied (LP), making it suitable for utilization as an insulation material.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信