复monge - ampantere方程的$L^\infty$估计

IF 5.7 1区 数学 Q1 MATHEMATICS
B. Guo, D. Phong, Freid Tong
{"title":"复monge - ampantere方程的$L^\\infty$估计","authors":"B. Guo, D. Phong, Freid Tong","doi":"10.4007/annals.2023.198.1.4","DOIUrl":null,"url":null,"abstract":"A PDE proof is provided for the sharp $L^\\infty$ estimates for the complex Monge-Amp\\`ere equation which had required pluripotential theory before. The proof covers both cases of fixed background as well as degenerating background metrics. It extends to more general fully non-linear equations satisfying a structural condition, and it also gives estimates of Trudinger type.","PeriodicalId":8134,"journal":{"name":"Annals of Mathematics","volume":null,"pages":null},"PeriodicalIF":5.7000,"publicationDate":"2021-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"On $L^\\\\infty$ estimates for complex Monge-Ampère equations\",\"authors\":\"B. Guo, D. Phong, Freid Tong\",\"doi\":\"10.4007/annals.2023.198.1.4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A PDE proof is provided for the sharp $L^\\\\infty$ estimates for the complex Monge-Amp\\\\`ere equation which had required pluripotential theory before. The proof covers both cases of fixed background as well as degenerating background metrics. It extends to more general fully non-linear equations satisfying a structural condition, and it also gives estimates of Trudinger type.\",\"PeriodicalId\":8134,\"journal\":{\"name\":\"Annals of Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2021-06-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4007/annals.2023.198.1.4\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4007/annals.2023.198.1.4","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

摘要

本文对复杂monge - ampante方程的精确$L^\infty$估计提供了偏微分方程证明,而这种估计以前需要多势理论。该证明涵盖了固定背景和退化背景度量两种情况。它扩展到更一般的满足结构条件的全非线性方程,并给出了Trudinger型的估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On $L^\infty$ estimates for complex Monge-Ampère equations
A PDE proof is provided for the sharp $L^\infty$ estimates for the complex Monge-Amp\`ere equation which had required pluripotential theory before. The proof covers both cases of fixed background as well as degenerating background metrics. It extends to more general fully non-linear equations satisfying a structural condition, and it also gives estimates of Trudinger type.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Annals of Mathematics
Annals of Mathematics 数学-数学
CiteScore
9.10
自引率
2.00%
发文量
29
审稿时长
12 months
期刊介绍: The Annals of Mathematics is published bimonthly by the Department of Mathematics at Princeton University with the cooperation of the Institute for Advanced Study. Founded in 1884 by Ormond Stone of the University of Virginia, the journal was transferred in 1899 to Harvard University, and in 1911 to Princeton University. Since 1933, the Annals has been edited jointly by Princeton University and the Institute for Advanced Study.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信