固体力学中Richardson外推的置信区间

IF 0.5 Q4 ENGINEERING, MECHANICAL
P. Krysl
{"title":"固体力学中Richardson外推的置信区间","authors":"P. Krysl","doi":"10.1115/1.4055728","DOIUrl":null,"url":null,"abstract":"\n A simple procedure for estimating the uncertainty of estimates of true solutions to problems of deflection, stress concentrations, and force resultants in solid and structural mechanics is introduced. Richardson extrapolation is carried out on a dataset of samples from a sequence of four grids. Simple median-based statistical analysis is used to establish 95% confidence intervals. The procedure leads to simple calculations that deliver reasonably tight estimates of the true solution and confidence intervals.","PeriodicalId":52254,"journal":{"name":"Journal of Verification, Validation and Uncertainty Quantification","volume":"1 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2022-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Confidence Intervals for Richardson Extrapolation in Solid Mechanics\",\"authors\":\"P. Krysl\",\"doi\":\"10.1115/1.4055728\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n A simple procedure for estimating the uncertainty of estimates of true solutions to problems of deflection, stress concentrations, and force resultants in solid and structural mechanics is introduced. Richardson extrapolation is carried out on a dataset of samples from a sequence of four grids. Simple median-based statistical analysis is used to establish 95% confidence intervals. The procedure leads to simple calculations that deliver reasonably tight estimates of the true solution and confidence intervals.\",\"PeriodicalId\":52254,\"journal\":{\"name\":\"Journal of Verification, Validation and Uncertainty Quantification\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2022-09-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Verification, Validation and Uncertainty Quantification\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/1.4055728\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Verification, Validation and Uncertainty Quantification","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/1.4055728","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

摘要

介绍了一种简单的程序,用于估计固体力学和结构力学中挠度、应力集中和合力问题的真解估计的不确定性。Richardson外推是在四个网格序列的样本数据集上进行的。简单的基于中位数的统计分析用于建立95%的置信区间。该程序产生了简单的计算,可以提供对真实解和置信区间的合理严密的估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Confidence Intervals for Richardson Extrapolation in Solid Mechanics
A simple procedure for estimating the uncertainty of estimates of true solutions to problems of deflection, stress concentrations, and force resultants in solid and structural mechanics is introduced. Richardson extrapolation is carried out on a dataset of samples from a sequence of four grids. Simple median-based statistical analysis is used to establish 95% confidence intervals. The procedure leads to simple calculations that deliver reasonably tight estimates of the true solution and confidence intervals.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.60
自引率
16.70%
发文量
12
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信