贝叶斯自回归自适应精细描述性采样算法在蒙特卡洛模拟中的应用

IF 0.7 Q3 STATISTICS & PROBABILITY
Djoweyda Ghouil, Megdouda Ourbih-Tari
{"title":"贝叶斯自回归自适应精细描述性采样算法在蒙特卡洛模拟中的应用","authors":"Djoweyda Ghouil, Megdouda Ourbih-Tari","doi":"10.1080/24754269.2023.2180225","DOIUrl":null,"url":null,"abstract":"This paper deals with the Monte Carlo Simulation in a Bayesian framework. It shows the importance of the use of Monte Carlo experiments through refined descriptive sampling within the autoregressive model , where and the errors are independent random variables following an exponential distribution of parameter θ. To achieve this, a Bayesian Autoregressive Adaptive Refined Descriptive Sampling (B2ARDS) algorithm is proposed to estimate the parameters ρ and θ of such a model by a Bayesian method. We have used the same prior as the one already used by some authors, and computed their properties when the Normality error assumption is released to an exponential distribution. The results show that B2ARDS algorithm provides accurate and efficient point estimates.","PeriodicalId":22070,"journal":{"name":"Statistical Theory and Related Fields","volume":"7 1","pages":"177 - 187"},"PeriodicalIF":0.7000,"publicationDate":"2023-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bayesian autoregressive adaptive refined descriptive sampling algorithm in the Monte Carlo simulation\",\"authors\":\"Djoweyda Ghouil, Megdouda Ourbih-Tari\",\"doi\":\"10.1080/24754269.2023.2180225\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper deals with the Monte Carlo Simulation in a Bayesian framework. It shows the importance of the use of Monte Carlo experiments through refined descriptive sampling within the autoregressive model , where and the errors are independent random variables following an exponential distribution of parameter θ. To achieve this, a Bayesian Autoregressive Adaptive Refined Descriptive Sampling (B2ARDS) algorithm is proposed to estimate the parameters ρ and θ of such a model by a Bayesian method. We have used the same prior as the one already used by some authors, and computed their properties when the Normality error assumption is released to an exponential distribution. The results show that B2ARDS algorithm provides accurate and efficient point estimates.\",\"PeriodicalId\":22070,\"journal\":{\"name\":\"Statistical Theory and Related Fields\",\"volume\":\"7 1\",\"pages\":\"177 - 187\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-05-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Statistical Theory and Related Fields\",\"FirstCategoryId\":\"96\",\"ListUrlMain\":\"https://doi.org/10.1080/24754269.2023.2180225\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistical Theory and Related Fields","FirstCategoryId":"96","ListUrlMain":"https://doi.org/10.1080/24754269.2023.2180225","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

摘要

本文讨论了贝叶斯框架下的蒙特卡罗模拟。它通过在自回归模型中进行精细的描述性抽样,表明了使用蒙特卡罗实验的重要性,其中和误差是遵循参数θ指数分布的独立随机变量。为了实现这一点,提出了一种贝叶斯自回归自适应精细描述采样(B2ARDS)算法,通过贝叶斯方法来估计这种模型的参数ρ和θ。我们使用了与一些作者已经使用的相同的先验,并在将正态性误差假设释放为指数分布时计算了它们的性质。结果表明,B2ARDS算法能够提供准确有效的点估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bayesian autoregressive adaptive refined descriptive sampling algorithm in the Monte Carlo simulation
This paper deals with the Monte Carlo Simulation in a Bayesian framework. It shows the importance of the use of Monte Carlo experiments through refined descriptive sampling within the autoregressive model , where and the errors are independent random variables following an exponential distribution of parameter θ. To achieve this, a Bayesian Autoregressive Adaptive Refined Descriptive Sampling (B2ARDS) algorithm is proposed to estimate the parameters ρ and θ of such a model by a Bayesian method. We have used the same prior as the one already used by some authors, and computed their properties when the Normality error assumption is released to an exponential distribution. The results show that B2ARDS algorithm provides accurate and efficient point estimates.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.90
自引率
20.00%
发文量
21
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信