完全随机和随机阻塞实验因果结构的d -最优设计

IF 1 Q3 STATISTICS & PROBABILITY
Zaher Kmail, K. Eskridge
{"title":"完全随机和随机阻塞实验因果结构的d -最优设计","authors":"Zaher Kmail, K. Eskridge","doi":"10.1155/2022/7299086","DOIUrl":null,"url":null,"abstract":"Most experimental design literature on causal inference focuses on establishing a causal relationship between variables, but there is no literature on how to identify a design that results in the optimal parameter estimates for a structural equation model (SEM). In this research, search algorithms are used to produce a D-optimal design for a SEM for three-stage least squares and full information maximum likelihood estimators. Then, a D-optimal design for the estimate of the model parameters of a mixed-effects SEM is obtained. The efficiency of each of the D-optimal designs for SEMs is compared with univariate optimal and uniform designs. In each case, the causal relationship changed the optimal designs dramatically and the new D-optimal designs were more efficient.","PeriodicalId":44760,"journal":{"name":"Journal of Probability and Statistics","volume":" ","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2022-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"D-Optimal Design for a Causal Structure for Completely Randomized and Random Blocked Experiments\",\"authors\":\"Zaher Kmail, K. Eskridge\",\"doi\":\"10.1155/2022/7299086\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Most experimental design literature on causal inference focuses on establishing a causal relationship between variables, but there is no literature on how to identify a design that results in the optimal parameter estimates for a structural equation model (SEM). In this research, search algorithms are used to produce a D-optimal design for a SEM for three-stage least squares and full information maximum likelihood estimators. Then, a D-optimal design for the estimate of the model parameters of a mixed-effects SEM is obtained. The efficiency of each of the D-optimal designs for SEMs is compared with univariate optimal and uniform designs. In each case, the causal relationship changed the optimal designs dramatically and the new D-optimal designs were more efficient.\",\"PeriodicalId\":44760,\"journal\":{\"name\":\"Journal of Probability and Statistics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2022-08-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Probability and Statistics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2022/7299086\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Probability and Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2022/7299086","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

摘要

大多数关于因果推断的实验设计文献都集中在建立变量之间的因果关系上,但没有关于如何确定能为结构方程模型(SEM)产生最佳参数估计的设计的文献。在这项研究中,搜索算法被用于产生三阶段最小二乘和全信息最大似然估计的SEM的D最优设计。然后,获得了用于估计混合效应SEM的模型参数的D-最优设计。将SEM的每个D最优设计的效率与单变量最优和均匀设计进行比较。在每种情况下,因果关系都会极大地改变最优设计,新的D最优设计更有效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
D-Optimal Design for a Causal Structure for Completely Randomized and Random Blocked Experiments
Most experimental design literature on causal inference focuses on establishing a causal relationship between variables, but there is no literature on how to identify a design that results in the optimal parameter estimates for a structural equation model (SEM). In this research, search algorithms are used to produce a D-optimal design for a SEM for three-stage least squares and full information maximum likelihood estimators. Then, a D-optimal design for the estimate of the model parameters of a mixed-effects SEM is obtained. The efficiency of each of the D-optimal designs for SEMs is compared with univariate optimal and uniform designs. In each case, the causal relationship changed the optimal designs dramatically and the new D-optimal designs were more efficient.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Probability and Statistics
Journal of Probability and Statistics STATISTICS & PROBABILITY-
自引率
0.00%
发文量
14
审稿时长
18 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信