{"title":"具有分段常变元的扩散-对流方程的一种数值格式","authors":"M. Esmaeilzadeh, H. Najafi, H. Aminikhah","doi":"10.22034/CMDE.2020.31155.1468","DOIUrl":null,"url":null,"abstract":"This article is concerned with using a finite difference method, namely the theta-methods, to solve the diffusion-convection equation with piecewise constant arguments.The stability of this scheme is also obtained. Since there are not many published results on the numerical solution of this sort of differential equation and because of the importance of the above equation in the physics and engineering sciences, we have decided to study and present a stable numerical solution for the above mentioned problem. At the end of article some experiments are done to demonstrate the stability of the scheme. We also draw the figures for the numerical and analytical solutions which confirm ou results.The numerical solutions have also been compared with analytical solutions.","PeriodicalId":44352,"journal":{"name":"Computational Methods for Differential Equations","volume":"8 1","pages":"573-584"},"PeriodicalIF":1.1000,"publicationDate":"2020-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"A numerical scheme for diffusion-convection equation with piecewise constant arguments\",\"authors\":\"M. Esmaeilzadeh, H. Najafi, H. Aminikhah\",\"doi\":\"10.22034/CMDE.2020.31155.1468\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article is concerned with using a finite difference method, namely the theta-methods, to solve the diffusion-convection equation with piecewise constant arguments.The stability of this scheme is also obtained. Since there are not many published results on the numerical solution of this sort of differential equation and because of the importance of the above equation in the physics and engineering sciences, we have decided to study and present a stable numerical solution for the above mentioned problem. At the end of article some experiments are done to demonstrate the stability of the scheme. We also draw the figures for the numerical and analytical solutions which confirm ou results.The numerical solutions have also been compared with analytical solutions.\",\"PeriodicalId\":44352,\"journal\":{\"name\":\"Computational Methods for Differential Equations\",\"volume\":\"8 1\",\"pages\":\"573-584\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2020-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational Methods for Differential Equations\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22034/CMDE.2020.31155.1468\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Methods for Differential Equations","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22034/CMDE.2020.31155.1468","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
A numerical scheme for diffusion-convection equation with piecewise constant arguments
This article is concerned with using a finite difference method, namely the theta-methods, to solve the diffusion-convection equation with piecewise constant arguments.The stability of this scheme is also obtained. Since there are not many published results on the numerical solution of this sort of differential equation and because of the importance of the above equation in the physics and engineering sciences, we have decided to study and present a stable numerical solution for the above mentioned problem. At the end of article some experiments are done to demonstrate the stability of the scheme. We also draw the figures for the numerical and analytical solutions which confirm ou results.The numerical solutions have also been compared with analytical solutions.