标准普尔500指数收益和期权时变跳跃风险的贝叶斯分析

IF 2.1 2区 经济学 Q2 BUSINESS, FINANCE
Andrew Carverhill , Dan Luo
{"title":"标准普尔500指数收益和期权时变跳跃风险的贝叶斯分析","authors":"Andrew Carverhill ,&nbsp;Dan Luo","doi":"10.1016/j.finmar.2022.100786","DOIUrl":null,"url":null,"abstract":"<div><p>We examine time-varying jump risk for modeling stock price dynamics and cross-sectional option prices. We explore jump-diffusion specifications with two independently evolving processes for stochastic volatility and jump intensity, respectively. We explicitly impose time-series consistency in model estimation using a Markov Chain Monte Carlo (MCMC) method. We find that both the jump size and standard deviation of jump size premia are more prominent under time-varying jump risk. Simultaneous jumps in returns and volatility help reconcile the time series of returns, volatility, and jump intensities. Finally, independent time-varying jump intensities improve the cross-sectional fit of option prices, especially at longer maturities.</p></div>","PeriodicalId":47899,"journal":{"name":"Journal of Financial Markets","volume":"64 ","pages":"Article 100786"},"PeriodicalIF":2.1000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A Bayesian analysis of time-varying jump risk in S&P 500 returns and options\",\"authors\":\"Andrew Carverhill ,&nbsp;Dan Luo\",\"doi\":\"10.1016/j.finmar.2022.100786\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We examine time-varying jump risk for modeling stock price dynamics and cross-sectional option prices. We explore jump-diffusion specifications with two independently evolving processes for stochastic volatility and jump intensity, respectively. We explicitly impose time-series consistency in model estimation using a Markov Chain Monte Carlo (MCMC) method. We find that both the jump size and standard deviation of jump size premia are more prominent under time-varying jump risk. Simultaneous jumps in returns and volatility help reconcile the time series of returns, volatility, and jump intensities. Finally, independent time-varying jump intensities improve the cross-sectional fit of option prices, especially at longer maturities.</p></div>\",\"PeriodicalId\":47899,\"journal\":{\"name\":\"Journal of Financial Markets\",\"volume\":\"64 \",\"pages\":\"Article 100786\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2023-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Financial Markets\",\"FirstCategoryId\":\"96\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1386418122000751\",\"RegionNum\":2,\"RegionCategory\":\"经济学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BUSINESS, FINANCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Financial Markets","FirstCategoryId":"96","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1386418122000751","RegionNum":2,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BUSINESS, FINANCE","Score":null,"Total":0}
引用次数: 2

摘要

我们研究时变跳跃风险建模股票价格动态和横截面期权价格。我们分别探讨了随机波动率和跳跃强度两个独立演化过程的跳跃-扩散规范。我们使用马尔可夫链蒙特卡罗(MCMC)方法显式地在模型估计中施加时间序列一致性。我们发现,在时变跳跃风险下,跳跃大小和跳跃大小溢价的标准差更为突出。收益和波动率的同时跳跃有助于调和收益、波动率和跳跃强度的时间序列。最后,独立的时变跳跃强度改善了期权价格的截面拟合,特别是在较长的期限。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Bayesian analysis of time-varying jump risk in S&P 500 returns and options

We examine time-varying jump risk for modeling stock price dynamics and cross-sectional option prices. We explore jump-diffusion specifications with two independently evolving processes for stochastic volatility and jump intensity, respectively. We explicitly impose time-series consistency in model estimation using a Markov Chain Monte Carlo (MCMC) method. We find that both the jump size and standard deviation of jump size premia are more prominent under time-varying jump risk. Simultaneous jumps in returns and volatility help reconcile the time series of returns, volatility, and jump intensities. Finally, independent time-varying jump intensities improve the cross-sectional fit of option prices, especially at longer maturities.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Financial Markets
Journal of Financial Markets BUSINESS, FINANCE-
CiteScore
3.40
自引率
3.60%
发文量
64
期刊介绍: The Journal of Financial Markets publishes high quality original research on applied and theoretical issues related to securities trading and pricing. Area of coverage includes the analysis and design of trading mechanisms, optimal order placement strategies, the role of information in securities markets, financial intermediation as it relates to securities investments - for example, the structure of brokerage and mutual fund industries, and analyses of short and long run horizon price behaviour. The journal strives to maintain a balance between theoretical and empirical work, and aims to provide prompt and constructive reviews to paper submitters.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信