关于子模系统的收缩和垂对的一些结果

Q4 Mathematics
Saeid Hanifehnezhad, Ardeshir Dolati
{"title":"关于子模系统的收缩和垂对的一些结果","authors":"Saeid Hanifehnezhad, Ardeshir Dolati","doi":"10.22130/SCMA.2018.91924.481","DOIUrl":null,"url":null,"abstract":"Submodularity is an important  property of set functions with deep theoretical results  and various  applications. Submodular systems appear in many applicable area, for example machine learning, economics, computer vision, social science, game theory and combinatorial optimization.  Nowadays submodular functions optimization has been attracted by many researchers.  Pendant pairs of a symmetric submodular system  play  essential role  in finding a minimizer of this system.  In this paper,  we investigate some relations between pendant  pairs of  a  submodular  system and pendant pairs of its contractions. For a symmetric submodular system $left(V,fright)$ we construct a suitable sequence of $left|Vright|-1$ pendant pairs of its contractions. By using this sequence, we present some properties of the system and its contractions. Finally, we prove some results about the minimizers of a posimodular function.","PeriodicalId":38924,"journal":{"name":"Communications in Mathematical Analysis","volume":"16 1","pages":"119-128"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Some Results about the Contractions and the Pendant Pairs of a Submodular System\",\"authors\":\"Saeid Hanifehnezhad, Ardeshir Dolati\",\"doi\":\"10.22130/SCMA.2018.91924.481\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Submodularity is an important  property of set functions with deep theoretical results  and various  applications. Submodular systems appear in many applicable area, for example machine learning, economics, computer vision, social science, game theory and combinatorial optimization.  Nowadays submodular functions optimization has been attracted by many researchers.  Pendant pairs of a symmetric submodular system  play  essential role  in finding a minimizer of this system.  In this paper,  we investigate some relations between pendant  pairs of  a  submodular  system and pendant pairs of its contractions. For a symmetric submodular system $left(V,fright)$ we construct a suitable sequence of $left|Vright|-1$ pendant pairs of its contractions. By using this sequence, we present some properties of the system and its contractions. Finally, we prove some results about the minimizers of a posimodular function.\",\"PeriodicalId\":38924,\"journal\":{\"name\":\"Communications in Mathematical Analysis\",\"volume\":\"16 1\",\"pages\":\"119-128\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications in Mathematical Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22130/SCMA.2018.91924.481\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Mathematical Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22130/SCMA.2018.91924.481","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

子模性是集函数的一个重要性质,具有深刻的理论成果和多种应用。子模系统出现在许多应用领域,例如机器学习、经济学、计算机视觉、社会科学、博弈论和组合优化。目前,子模函数的优化已经受到许多研究者的关注。对称子模系统的悬垂对在求该系统的极小值方面起着至关重要的作用。本文研究了子模系统的垂对与其收缩的垂对之间的一些关系。对于对称子模系统$left(V,惊吓)$,我们构造了一个合适的序列$left|Vright|-1$它的收缩垂对。通过使用这个序列,我们给出了系统的一些性质及其收缩。最后,我们证明了关于正模函数的极小化子的一些结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Some Results about the Contractions and the Pendant Pairs of a Submodular System
Submodularity is an important  property of set functions with deep theoretical results  and various  applications. Submodular systems appear in many applicable area, for example machine learning, economics, computer vision, social science, game theory and combinatorial optimization.  Nowadays submodular functions optimization has been attracted by many researchers.  Pendant pairs of a symmetric submodular system  play  essential role  in finding a minimizer of this system.  In this paper,  we investigate some relations between pendant  pairs of  a  submodular  system and pendant pairs of its contractions. For a symmetric submodular system $left(V,fright)$ we construct a suitable sequence of $left|Vright|-1$ pendant pairs of its contractions. By using this sequence, we present some properties of the system and its contractions. Finally, we prove some results about the minimizers of a posimodular function.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Communications in Mathematical Analysis
Communications in Mathematical Analysis Mathematics-Applied Mathematics
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信