遍历理论与分析中的振荡不等式:单参数与多参数观点

IF 1.3 2区 数学 Q1 MATHEMATICS
Mariusz Mirek, T. Szarek, James Wright
{"title":"遍历理论与分析中的振荡不等式:单参数与多参数观点","authors":"Mariusz Mirek, T. Szarek, James Wright","doi":"10.4171/rmi/1383","DOIUrl":null,"url":null,"abstract":". In this survey we review useful tools that naturally arise in the study of pointwise convergence problems in analysis, ergodic theory and probability. We will pay special attention to quantitative aspects of pointwise convergence phenomena from the point of view of oscillation estimates in both the single and several parameter settings. We establish a number of new oscillation inequalities and give new proofs for known results with elementary arguments.","PeriodicalId":49604,"journal":{"name":"Revista Matematica Iberoamericana","volume":" ","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2022-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Oscillation inequalities in ergodic theory and analysis: one-parameter and multi-parameter perspectives\",\"authors\":\"Mariusz Mirek, T. Szarek, James Wright\",\"doi\":\"10.4171/rmi/1383\",\"DOIUrl\":null,\"url\":null,\"abstract\":\". In this survey we review useful tools that naturally arise in the study of pointwise convergence problems in analysis, ergodic theory and probability. We will pay special attention to quantitative aspects of pointwise convergence phenomena from the point of view of oscillation estimates in both the single and several parameter settings. We establish a number of new oscillation inequalities and give new proofs for known results with elementary arguments.\",\"PeriodicalId\":49604,\"journal\":{\"name\":\"Revista Matematica Iberoamericana\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2022-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Revista Matematica Iberoamericana\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4171/rmi/1383\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Revista Matematica Iberoamericana","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4171/rmi/1383","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 5

摘要

在这项调查中,我们回顾了在分析、遍历理论和概率中研究逐点收敛问题时自然出现的有用工具。我们将从单参数和多参数设置中的振荡估计的角度,特别关注逐点收敛现象的定量方面。我们建立了一些新的振荡不等式,并用初等自变量对已知结果给出了新的证明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Oscillation inequalities in ergodic theory and analysis: one-parameter and multi-parameter perspectives
. In this survey we review useful tools that naturally arise in the study of pointwise convergence problems in analysis, ergodic theory and probability. We will pay special attention to quantitative aspects of pointwise convergence phenomena from the point of view of oscillation estimates in both the single and several parameter settings. We establish a number of new oscillation inequalities and give new proofs for known results with elementary arguments.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.40
自引率
0.00%
发文量
61
审稿时长
>12 weeks
期刊介绍: Revista Matemática Iberoamericana publishes original research articles on all areas of mathematics. Its distinguished Editorial Board selects papers according to the highest standards. Founded in 1985, Revista is a scientific journal of Real Sociedad Matemática Española.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信