Minkowski空间中的旋转$K^{\alpha}$-翻译器

Pub Date : 2022-02-12 DOI:10.11650/tjm/230602
M. Aydın, Rafael L'opez
{"title":"Minkowski空间中的旋转$K^{\\alpha}$-翻译器","authors":"M. Aydın, Rafael L'opez","doi":"10.11650/tjm/230602","DOIUrl":null,"url":null,"abstract":"A spacelike surface in Minkowski space $\\mathbb{R}_1^3$ is called a $K^\\alpha$-translator of the flow by the powers of Gauss curvature if satisfies $K^\\alpha= \\langle N,\\vec{v}\\rangle$, $\\alpha \\neq 0$, where $K$ is the Gauss curvature, $N$ is the unit normal vector field and $\\vec{v}$ is a direction of $\\mathbb{R}_1^3$. In this paper, we classify all rotational $K^\\alpha$-translators. This classification will depend on the causal character of the rotation axis. Although the theory of the $K^\\alpha$-flow holds for spacelike surfaces, the equation describing $K^\\alpha$-translators is still valid for timelike surfaces. So we also investigate the timelike rotational surfaces that satisfy the same prescribing Gauss curvature equation.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Rotational $K^{\\\\alpha}$-translators in Minkowski Space\",\"authors\":\"M. Aydın, Rafael L'opez\",\"doi\":\"10.11650/tjm/230602\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A spacelike surface in Minkowski space $\\\\mathbb{R}_1^3$ is called a $K^\\\\alpha$-translator of the flow by the powers of Gauss curvature if satisfies $K^\\\\alpha= \\\\langle N,\\\\vec{v}\\\\rangle$, $\\\\alpha \\\\neq 0$, where $K$ is the Gauss curvature, $N$ is the unit normal vector field and $\\\\vec{v}$ is a direction of $\\\\mathbb{R}_1^3$. In this paper, we classify all rotational $K^\\\\alpha$-translators. This classification will depend on the causal character of the rotation axis. Although the theory of the $K^\\\\alpha$-flow holds for spacelike surfaces, the equation describing $K^\\\\alpha$-translators is still valid for timelike surfaces. So we also investigate the timelike rotational surfaces that satisfy the same prescribing Gauss curvature equation.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2022-02-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.11650/tjm/230602\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.11650/tjm/230602","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

Minkowski空间中的类空间曲面$\mathbb{R}_1^如果满足$K^\alpha=\langle N,\vec{v}\langle$,$\alpha\neq 0$,则通过高斯曲率的幂将3$称为流的$K^\alpha$转换器,其中$K$是高斯曲率,$N$是单位法向量场,$\vec{v}$是$\mathbb的方向{R}_1^3美元。在本文中,我们对所有轮换的$K^\alpha$翻译器进行了分类。这种分类将取决于旋转轴的因果特性。尽管$K^\alpha$流的理论适用于类空间曲面,但描述$K^\alpha$翻译器的方程仍然适用于类时间曲面。因此,我们还研究了满足相同高斯曲率方程的类时间旋转曲面。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Rotational $K^{\alpha}$-translators in Minkowski Space
A spacelike surface in Minkowski space $\mathbb{R}_1^3$ is called a $K^\alpha$-translator of the flow by the powers of Gauss curvature if satisfies $K^\alpha= \langle N,\vec{v}\rangle$, $\alpha \neq 0$, where $K$ is the Gauss curvature, $N$ is the unit normal vector field and $\vec{v}$ is a direction of $\mathbb{R}_1^3$. In this paper, we classify all rotational $K^\alpha$-translators. This classification will depend on the causal character of the rotation axis. Although the theory of the $K^\alpha$-flow holds for spacelike surfaces, the equation describing $K^\alpha$-translators is still valid for timelike surfaces. So we also investigate the timelike rotational surfaces that satisfy the same prescribing Gauss curvature equation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信