Minkowski空间中的旋转$K^{\alpha}$-翻译器

IF 0.6 4区 数学 Q3 MATHEMATICS
M. Aydın, Rafael L'opez
{"title":"Minkowski空间中的旋转$K^{\\alpha}$-翻译器","authors":"M. Aydın, Rafael L'opez","doi":"10.11650/tjm/230602","DOIUrl":null,"url":null,"abstract":"A spacelike surface in Minkowski space $\\mathbb{R}_1^3$ is called a $K^\\alpha$-translator of the flow by the powers of Gauss curvature if satisfies $K^\\alpha= \\langle N,\\vec{v}\\rangle$, $\\alpha \\neq 0$, where $K$ is the Gauss curvature, $N$ is the unit normal vector field and $\\vec{v}$ is a direction of $\\mathbb{R}_1^3$. In this paper, we classify all rotational $K^\\alpha$-translators. This classification will depend on the causal character of the rotation axis. Although the theory of the $K^\\alpha$-flow holds for spacelike surfaces, the equation describing $K^\\alpha$-translators is still valid for timelike surfaces. So we also investigate the timelike rotational surfaces that satisfy the same prescribing Gauss curvature equation.","PeriodicalId":22176,"journal":{"name":"Taiwanese Journal of Mathematics","volume":"1 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2022-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Rotational $K^{\\\\alpha}$-translators in Minkowski Space\",\"authors\":\"M. Aydın, Rafael L'opez\",\"doi\":\"10.11650/tjm/230602\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A spacelike surface in Minkowski space $\\\\mathbb{R}_1^3$ is called a $K^\\\\alpha$-translator of the flow by the powers of Gauss curvature if satisfies $K^\\\\alpha= \\\\langle N,\\\\vec{v}\\\\rangle$, $\\\\alpha \\\\neq 0$, where $K$ is the Gauss curvature, $N$ is the unit normal vector field and $\\\\vec{v}$ is a direction of $\\\\mathbb{R}_1^3$. In this paper, we classify all rotational $K^\\\\alpha$-translators. This classification will depend on the causal character of the rotation axis. Although the theory of the $K^\\\\alpha$-flow holds for spacelike surfaces, the equation describing $K^\\\\alpha$-translators is still valid for timelike surfaces. So we also investigate the timelike rotational surfaces that satisfy the same prescribing Gauss curvature equation.\",\"PeriodicalId\":22176,\"journal\":{\"name\":\"Taiwanese Journal of Mathematics\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2022-02-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Taiwanese Journal of Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.11650/tjm/230602\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Taiwanese Journal of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.11650/tjm/230602","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

Minkowski空间中的类空间曲面$\mathbb{R}_1^如果满足$K^\alpha=\langle N,\vec{v}\langle$,$\alpha\neq 0$,则通过高斯曲率的幂将3$称为流的$K^\alpha$转换器,其中$K$是高斯曲率,$N$是单位法向量场,$\vec{v}$是$\mathbb的方向{R}_1^3美元。在本文中,我们对所有轮换的$K^\alpha$翻译器进行了分类。这种分类将取决于旋转轴的因果特性。尽管$K^\alpha$流的理论适用于类空间曲面,但描述$K^\alpha$翻译器的方程仍然适用于类时间曲面。因此,我们还研究了满足相同高斯曲率方程的类时间旋转曲面。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Rotational $K^{\alpha}$-translators in Minkowski Space
A spacelike surface in Minkowski space $\mathbb{R}_1^3$ is called a $K^\alpha$-translator of the flow by the powers of Gauss curvature if satisfies $K^\alpha= \langle N,\vec{v}\rangle$, $\alpha \neq 0$, where $K$ is the Gauss curvature, $N$ is the unit normal vector field and $\vec{v}$ is a direction of $\mathbb{R}_1^3$. In this paper, we classify all rotational $K^\alpha$-translators. This classification will depend on the causal character of the rotation axis. Although the theory of the $K^\alpha$-flow holds for spacelike surfaces, the equation describing $K^\alpha$-translators is still valid for timelike surfaces. So we also investigate the timelike rotational surfaces that satisfy the same prescribing Gauss curvature equation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.10
自引率
0.00%
发文量
35
审稿时长
3 months
期刊介绍: The Taiwanese Journal of Mathematics, published by the Mathematical Society of the Republic of China (Taiwan), is a continuation of the former Chinese Journal of Mathematics (1973-1996). It aims to publish original research papers and survey articles in all areas of mathematics. It will also occasionally publish proceedings of conferences co-organized by the Society. The purpose is to reflect the progress of the mathematical research in Taiwan and, by providing an international forum, to stimulate its further developments. The journal appears bimonthly each year beginning from 2008.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信