降维年龄流形中各成分可分类能力的年龄估计

Pak DuHo, Ri KumHyok, Hyon CunGyong
{"title":"降维年龄流形中各成分可分类能力的年龄估计","authors":"Pak DuHo, Ri KumHyok, Hyon CunGyong","doi":"10.21917/ijivp.2018.0241","DOIUrl":null,"url":null,"abstract":"A new age estimation method that takes classifiable ability of each component in age manifold into account is considered. First, we analysis the age classification rate of each component in reduced dimension age manifold. Second, we apply this property to kernel function in popular method such as SVM. This is implemented by weighted kernel function. Finally, we evaluate this method in “wild” face image database. Experimental results demonstrate the effectiveness and robustness of our proposed framework.","PeriodicalId":30615,"journal":{"name":"ICTACT Journal on Image and Video Processing","volume":"8 1","pages":"1716-1721"},"PeriodicalIF":0.0000,"publicationDate":"2018-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"AGE ESTIMATION WITH REGARD FOR CLASSIFIABLE ABILITY OF EACH COMPONENT IN REDUCED DIMENSION AGE MANIFOLD\",\"authors\":\"Pak DuHo, Ri KumHyok, Hyon CunGyong\",\"doi\":\"10.21917/ijivp.2018.0241\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A new age estimation method that takes classifiable ability of each component in age manifold into account is considered. First, we analysis the age classification rate of each component in reduced dimension age manifold. Second, we apply this property to kernel function in popular method such as SVM. This is implemented by weighted kernel function. Finally, we evaluate this method in “wild” face image database. Experimental results demonstrate the effectiveness and robustness of our proposed framework.\",\"PeriodicalId\":30615,\"journal\":{\"name\":\"ICTACT Journal on Image and Video Processing\",\"volume\":\"8 1\",\"pages\":\"1716-1721\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ICTACT Journal on Image and Video Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21917/ijivp.2018.0241\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICTACT Journal on Image and Video Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21917/ijivp.2018.0241","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

考虑了一种新的年龄估计方法,该方法考虑了年龄流形中各分量的可分类能力。首先,我们分析了降维年龄流形中各成分的年龄分类率。其次,我们将这一性质应用于支持向量机等常用方法中的核函数。这是通过加权核函数实现的。最后,我们在“野生”人脸图像数据库中对该方法进行了评估。实验结果证明了我们提出的框架的有效性和稳健性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
AGE ESTIMATION WITH REGARD FOR CLASSIFIABLE ABILITY OF EACH COMPONENT IN REDUCED DIMENSION AGE MANIFOLD
A new age estimation method that takes classifiable ability of each component in age manifold into account is considered. First, we analysis the age classification rate of each component in reduced dimension age manifold. Second, we apply this property to kernel function in popular method such as SVM. This is implemented by weighted kernel function. Finally, we evaluate this method in “wild” face image database. Experimental results demonstrate the effectiveness and robustness of our proposed framework.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
审稿时长
8 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信