机器学习作为分类电子层析重建的工具

IF 3.56 Q1 Medicine
Lech Staniewicz, Paul A. Midgley
{"title":"机器学习作为分类电子层析重建的工具","authors":"Lech Staniewicz,&nbsp;Paul A. Midgley","doi":"10.1186/s40679-015-0010-x","DOIUrl":null,"url":null,"abstract":"<p>Electron tomographic reconstructions often contain artefacts from sources such as noise in the projections and a “missing wedge” of projection angles which can hamper quantitative analysis. We present a machine-learning approach using freely available software for analysing imperfect reconstructions to be used in place of the more traditional thresholding based on grey-level technique and show that a properly trained image classifier can achieve manual levels of accuracy even on heavily artefacted data, though if multiple reconstructions are being processed, a separate classifier will need to be trained on each reconstruction for maximum accuracy.</p>","PeriodicalId":460,"journal":{"name":"Advanced Structural and Chemical Imaging","volume":"1 1","pages":""},"PeriodicalIF":3.5600,"publicationDate":"2015-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s40679-015-0010-x","citationCount":"21","resultStr":"{\"title\":\"Machine learning as a tool for classifying electron tomographic reconstructions\",\"authors\":\"Lech Staniewicz,&nbsp;Paul A. Midgley\",\"doi\":\"10.1186/s40679-015-0010-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Electron tomographic reconstructions often contain artefacts from sources such as noise in the projections and a “missing wedge” of projection angles which can hamper quantitative analysis. We present a machine-learning approach using freely available software for analysing imperfect reconstructions to be used in place of the more traditional thresholding based on grey-level technique and show that a properly trained image classifier can achieve manual levels of accuracy even on heavily artefacted data, though if multiple reconstructions are being processed, a separate classifier will need to be trained on each reconstruction for maximum accuracy.</p>\",\"PeriodicalId\":460,\"journal\":{\"name\":\"Advanced Structural and Chemical Imaging\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":3.5600,\"publicationDate\":\"2015-08-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1186/s40679-015-0010-x\",\"citationCount\":\"21\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Structural and Chemical Imaging\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1186/s40679-015-0010-x\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Structural and Chemical Imaging","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1186/s40679-015-0010-x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 21

摘要

电子层析重建通常包含来自投影中的噪声和投影角度的“缺失楔”等来源的伪影,这可能会妨碍定量分析。我们提出了一种机器学习方法,使用免费的软件来分析不完美的重建,以取代基于灰度技术的更传统的阈值,并表明经过适当训练的图像分类器即使在大量人工数据上也可以达到人工水平的准确性,尽管如果正在处理多个重建,则需要对每个重建进行单独的分类器训练以获得最大的准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Machine learning as a tool for classifying electron tomographic reconstructions

Machine learning as a tool for classifying electron tomographic reconstructions

Electron tomographic reconstructions often contain artefacts from sources such as noise in the projections and a “missing wedge” of projection angles which can hamper quantitative analysis. We present a machine-learning approach using freely available software for analysing imperfect reconstructions to be used in place of the more traditional thresholding based on grey-level technique and show that a properly trained image classifier can achieve manual levels of accuracy even on heavily artefacted data, though if multiple reconstructions are being processed, a separate classifier will need to be trained on each reconstruction for maximum accuracy.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Structural and Chemical Imaging
Advanced Structural and Chemical Imaging Medicine-Radiology, Nuclear Medicine and Imaging
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信