奇异摄动微分方程的弱公式的一致收敛数值方法

Weiqun Zhang
{"title":"奇异摄动微分方程的弱公式的一致收敛数值方法","authors":"Weiqun Zhang","doi":"10.17265/2159-5291/2019.01.001","DOIUrl":null,"url":null,"abstract":"A numerical method using weak formulation is proposed to solve singularly perturbed differential equations. The numerical method is applied to both linear and nonlinear perturbation problems. A linear differential equation is solved using its weak formulation with a test space composed of exponential functions matching boundary layers. A nonlinear singular perturbation problem is converted into a system of linear differentiation equations. Then each linear differential equation is solved iteratively. The uniform convergence, which is independent of the singular perturbation parameter, is numerically verified.","PeriodicalId":61124,"journal":{"name":"数学和系统科学:英文版","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A Uniformly Convergent Numerical Method Using Weak Formulation for Singularly Perturbed Differential Equations\",\"authors\":\"Weiqun Zhang\",\"doi\":\"10.17265/2159-5291/2019.01.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A numerical method using weak formulation is proposed to solve singularly perturbed differential equations. The numerical method is applied to both linear and nonlinear perturbation problems. A linear differential equation is solved using its weak formulation with a test space composed of exponential functions matching boundary layers. A nonlinear singular perturbation problem is converted into a system of linear differentiation equations. Then each linear differential equation is solved iteratively. The uniform convergence, which is independent of the singular perturbation parameter, is numerically verified.\",\"PeriodicalId\":61124,\"journal\":{\"name\":\"数学和系统科学:英文版\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-01-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"数学和系统科学:英文版\",\"FirstCategoryId\":\"1089\",\"ListUrlMain\":\"https://doi.org/10.17265/2159-5291/2019.01.001\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"数学和系统科学:英文版","FirstCategoryId":"1089","ListUrlMain":"https://doi.org/10.17265/2159-5291/2019.01.001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

提出了一种利用弱公式求解奇异摄动微分方程的数值方法。数值方法适用于线性和非线性扰动问题。利用线性微分方程的弱公式求解了一个由匹配边界层的指数函数组成的测试空间。将一个非线性奇异摄动问题转化为一个线性微分方程组。然后迭代求解每个线性微分方程。数值验证了该方法与奇异扰动参数无关的一致收敛性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Uniformly Convergent Numerical Method Using Weak Formulation for Singularly Perturbed Differential Equations
A numerical method using weak formulation is proposed to solve singularly perturbed differential equations. The numerical method is applied to both linear and nonlinear perturbation problems. A linear differential equation is solved using its weak formulation with a test space composed of exponential functions matching boundary layers. A nonlinear singular perturbation problem is converted into a system of linear differentiation equations. Then each linear differential equation is solved iteratively. The uniform convergence, which is independent of the singular perturbation parameter, is numerically verified.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
450
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信