有质量源的Cahn–Hilliard方程的双曲松弛

IF 1.1 4区 数学 Q2 MATHEMATICS, APPLIED
Dieunel Dor
{"title":"有质量源的Cahn–Hilliard方程的双曲松弛","authors":"Dieunel Dor","doi":"10.3233/asy-231844","DOIUrl":null,"url":null,"abstract":"In this paper, we consider the hyperbolic Cahn–Hilliard equation with a proliferation term, which has applications in biology. First, we study the well-posedness and the regularity of the solutions, which then allow us to study the dissipativity and the high-order dissipativity and finally the existence of the exponential attractor with Dirichlet boundary conditions. Finally, we give numerical simulations that confirm the results.","PeriodicalId":55438,"journal":{"name":"Asymptotic Analysis","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2023-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"On the hyperbolic relaxation of the Cahn–Hilliard equation with a mass source\",\"authors\":\"Dieunel Dor\",\"doi\":\"10.3233/asy-231844\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we consider the hyperbolic Cahn–Hilliard equation with a proliferation term, which has applications in biology. First, we study the well-posedness and the regularity of the solutions, which then allow us to study the dissipativity and the high-order dissipativity and finally the existence of the exponential attractor with Dirichlet boundary conditions. Finally, we give numerical simulations that confirm the results.\",\"PeriodicalId\":55438,\"journal\":{\"name\":\"Asymptotic Analysis\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2023-06-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Asymptotic Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.3233/asy-231844\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asymptotic Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3233/asy-231844","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 1

摘要

在本文中,我们考虑了具有增殖项的双曲型Cahn–Hilliard方程,该方程在生物学中有应用。首先,我们研究了解的适定性和正则性,这使我们能够研究耗散性和高阶耗散性,最后研究具有Dirichlet边界条件的指数吸引子的存在性。最后,我们进行了数值模拟,验证了结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the hyperbolic relaxation of the Cahn–Hilliard equation with a mass source
In this paper, we consider the hyperbolic Cahn–Hilliard equation with a proliferation term, which has applications in biology. First, we study the well-posedness and the regularity of the solutions, which then allow us to study the dissipativity and the high-order dissipativity and finally the existence of the exponential attractor with Dirichlet boundary conditions. Finally, we give numerical simulations that confirm the results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Asymptotic Analysis
Asymptotic Analysis 数学-应用数学
CiteScore
1.90
自引率
7.10%
发文量
91
审稿时长
6 months
期刊介绍: The journal Asymptotic Analysis fulfills a twofold function. It aims at publishing original mathematical results in the asymptotic theory of problems affected by the presence of small or large parameters on the one hand, and at giving specific indications of their possible applications to different fields of natural sciences on the other hand. Asymptotic Analysis thus provides mathematicians with a concentrated source of newly acquired information which they may need in the analysis of asymptotic problems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信