Bilal Majeed, Jiming Peng, Ang Li, Ying Lin, R. Delgado
{"title":"基于多源综合数据的弱势社区流动诊所服务需求预测","authors":"Bilal Majeed, Jiming Peng, Ang Li, Ying Lin, R. Delgado","doi":"10.1080/24725579.2020.1859305","DOIUrl":null,"url":null,"abstract":"Abstract Demand forecasting plays an important role in the deployment of mobile clinic services to vulnerable communities such as school zones and census tracts as it can help the service provider to maximize its coverage under limited resources. In this paper, we consider the issue of how to predict the vaccination delinquency in schools and census tracts. Such an issue is rather challenging as the delinquency is only observed in schools for which very limited information is available; while rich demographic and economic information is available for census tracts, no observations of delinquency have been made at the census tract level. To address the above challenge, we first develop a hierarchical approach to forecast the demand for vaccinations in schools and census tracts. In the first stage of the hierarchical approach, we solve a linear optimization model to compute an association matrix that can align some common features in both census tracts and school zones. Then we use the estimated association to develop a forecasting model to predict the vaccination delinquency in both schools and census tracts. A non-convex quadratic optimization (QO) model is also proposed to find the association matrix and the forecasting model simultaneously. We also introduce an alternative update scheme for the non-convex QO and establish the convergence of the algorithm. Moreover, the two association matrices generated from the proposed approaches can be used to impute the information in the school zone data, which further allows us to apply existing forecasting models to predict the demand in school zones based on the imputed data. A case study from the Houston Independent School District (HISD) and its associated communities is reported to demonstrate the efficacy of the new models and techniques.","PeriodicalId":37744,"journal":{"name":"IISE Transactions on Healthcare Systems Engineering","volume":"11 1","pages":"113 - 127"},"PeriodicalIF":1.5000,"publicationDate":"2020-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/24725579.2020.1859305","citationCount":"5","resultStr":"{\"title\":\"Forecasting the demand of mobile clinic services at vulnerable communities based on integrated multi-source data\",\"authors\":\"Bilal Majeed, Jiming Peng, Ang Li, Ying Lin, R. Delgado\",\"doi\":\"10.1080/24725579.2020.1859305\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Demand forecasting plays an important role in the deployment of mobile clinic services to vulnerable communities such as school zones and census tracts as it can help the service provider to maximize its coverage under limited resources. In this paper, we consider the issue of how to predict the vaccination delinquency in schools and census tracts. Such an issue is rather challenging as the delinquency is only observed in schools for which very limited information is available; while rich demographic and economic information is available for census tracts, no observations of delinquency have been made at the census tract level. To address the above challenge, we first develop a hierarchical approach to forecast the demand for vaccinations in schools and census tracts. In the first stage of the hierarchical approach, we solve a linear optimization model to compute an association matrix that can align some common features in both census tracts and school zones. Then we use the estimated association to develop a forecasting model to predict the vaccination delinquency in both schools and census tracts. A non-convex quadratic optimization (QO) model is also proposed to find the association matrix and the forecasting model simultaneously. We also introduce an alternative update scheme for the non-convex QO and establish the convergence of the algorithm. Moreover, the two association matrices generated from the proposed approaches can be used to impute the information in the school zone data, which further allows us to apply existing forecasting models to predict the demand in school zones based on the imputed data. A case study from the Houston Independent School District (HISD) and its associated communities is reported to demonstrate the efficacy of the new models and techniques.\",\"PeriodicalId\":37744,\"journal\":{\"name\":\"IISE Transactions on Healthcare Systems Engineering\",\"volume\":\"11 1\",\"pages\":\"113 - 127\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2020-12-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/24725579.2020.1859305\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IISE Transactions on Healthcare Systems Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/24725579.2020.1859305\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"HEALTH CARE SCIENCES & SERVICES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IISE Transactions on Healthcare Systems Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/24725579.2020.1859305","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
Forecasting the demand of mobile clinic services at vulnerable communities based on integrated multi-source data
Abstract Demand forecasting plays an important role in the deployment of mobile clinic services to vulnerable communities such as school zones and census tracts as it can help the service provider to maximize its coverage under limited resources. In this paper, we consider the issue of how to predict the vaccination delinquency in schools and census tracts. Such an issue is rather challenging as the delinquency is only observed in schools for which very limited information is available; while rich demographic and economic information is available for census tracts, no observations of delinquency have been made at the census tract level. To address the above challenge, we first develop a hierarchical approach to forecast the demand for vaccinations in schools and census tracts. In the first stage of the hierarchical approach, we solve a linear optimization model to compute an association matrix that can align some common features in both census tracts and school zones. Then we use the estimated association to develop a forecasting model to predict the vaccination delinquency in both schools and census tracts. A non-convex quadratic optimization (QO) model is also proposed to find the association matrix and the forecasting model simultaneously. We also introduce an alternative update scheme for the non-convex QO and establish the convergence of the algorithm. Moreover, the two association matrices generated from the proposed approaches can be used to impute the information in the school zone data, which further allows us to apply existing forecasting models to predict the demand in school zones based on the imputed data. A case study from the Houston Independent School District (HISD) and its associated communities is reported to demonstrate the efficacy of the new models and techniques.
期刊介绍:
IISE Transactions on Healthcare Systems Engineering aims to foster the healthcare systems community by publishing high quality papers that have a strong methodological focus and direct applicability to healthcare systems. Published quarterly, the journal supports research that explores: · Healthcare Operations Management · Medical Decision Making · Socio-Technical Systems Analysis related to healthcare · Quality Engineering · Healthcare Informatics · Healthcare Policy We are looking forward to accepting submissions that document the development and use of industrial and systems engineering tools and techniques including: · Healthcare operations research · Healthcare statistics · Healthcare information systems · Healthcare work measurement · Human factors/ergonomics applied to healthcare systems Research that explores the integration of these tools and techniques with those from other engineering and medical disciplines are also featured. We encourage the submission of clinical notes, or practice notes, to show the impact of contributions that will be published. We also encourage authors to collect an impact statement from their clinical partners to show the impact of research in the clinical practices.