对红树林蟹在波斯湾和阿曼海未来潜在分布的见解

IF 2 2区 生物学 Q3 EVOLUTIONARY BIOLOGY
Sana Sharifian, Ehsan Kamrani, Hanieh Saeedi
{"title":"对红树林蟹在波斯湾和阿曼海未来潜在分布的见解","authors":"Sana Sharifian,&nbsp;Ehsan Kamrani,&nbsp;Hanieh Saeedi","doi":"10.1111/jzs.12532","DOIUrl":null,"url":null,"abstract":"<p>Mangroves are an ideal habitat for brachyuran crabs because of nutritional and shelter support. Using maximum entropy (MaxEnt) modeling technique, we projected the potential global distributions of 10 dominant species of mangrove crabs from the Persian Gulf and the Sea of Oman under future climate change. The highest species richness of mangrove crabs was in the Northeast Persian Gulf, including the Strait of Hormuz and Qeshm Island, as well as the North Sea of Oman. Our results revealed that depth and sea surface temperature (SST) were the most important drivers of distribution of mangrove crabs. The most potential suitable environments are located along the coastal areas of the Persian Gulf, and the Sea of Oman, where the depth is &lt;16.89 m, temperature is between 27.70 and 28.08°C, salinity is between 37.21 and 40.61 PSS, and currents velocity is between 0.01 and 0.05 m<sup>−1</sup> for the present output models. Future distribution model outputs showed that, areas with depth &lt;3.12 m, temperature between 28.53 and 28.92°C, salinity between 37.21 and 40.63 PSS, and current velocity between 0.01 and 0.05 m<sup>−1</sup> were the most suitable environments for future potential distributions of mangrove crabs. MaxEnt model outputs revealed that five species (50%) will expand and the remaining (50%) will shrink in their future distribution ranges. The model outputs predicted that some of the species might lose their habitat in future, and some might invade other ecosystem as invasive species. These findings thus highlight not only the vulnerability of mangrove crabs to habitat loss, but also alert their potential invasions to other ecosystems due to future climate changes. This outcome should be considered as a basic guideline for species management of mangrove systems.</p>","PeriodicalId":54751,"journal":{"name":"Journal of Zoological Systematics and Evolutionary Research","volume":null,"pages":null},"PeriodicalIF":2.0000,"publicationDate":"2021-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Insights toward the future potential distribution of mangrove crabs in the Persian Gulf and the Sea of Oman\",\"authors\":\"Sana Sharifian,&nbsp;Ehsan Kamrani,&nbsp;Hanieh Saeedi\",\"doi\":\"10.1111/jzs.12532\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Mangroves are an ideal habitat for brachyuran crabs because of nutritional and shelter support. Using maximum entropy (MaxEnt) modeling technique, we projected the potential global distributions of 10 dominant species of mangrove crabs from the Persian Gulf and the Sea of Oman under future climate change. The highest species richness of mangrove crabs was in the Northeast Persian Gulf, including the Strait of Hormuz and Qeshm Island, as well as the North Sea of Oman. Our results revealed that depth and sea surface temperature (SST) were the most important drivers of distribution of mangrove crabs. The most potential suitable environments are located along the coastal areas of the Persian Gulf, and the Sea of Oman, where the depth is &lt;16.89 m, temperature is between 27.70 and 28.08°C, salinity is between 37.21 and 40.61 PSS, and currents velocity is between 0.01 and 0.05 m<sup>−1</sup> for the present output models. Future distribution model outputs showed that, areas with depth &lt;3.12 m, temperature between 28.53 and 28.92°C, salinity between 37.21 and 40.63 PSS, and current velocity between 0.01 and 0.05 m<sup>−1</sup> were the most suitable environments for future potential distributions of mangrove crabs. MaxEnt model outputs revealed that five species (50%) will expand and the remaining (50%) will shrink in their future distribution ranges. The model outputs predicted that some of the species might lose their habitat in future, and some might invade other ecosystem as invasive species. These findings thus highlight not only the vulnerability of mangrove crabs to habitat loss, but also alert their potential invasions to other ecosystems due to future climate changes. This outcome should be considered as a basic guideline for species management of mangrove systems.</p>\",\"PeriodicalId\":54751,\"journal\":{\"name\":\"Journal of Zoological Systematics and Evolutionary Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2021-11-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Zoological Systematics and Evolutionary Research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/jzs.12532\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"EVOLUTIONARY BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Zoological Systematics and Evolutionary Research","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/jzs.12532","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"EVOLUTIONARY BIOLOGY","Score":null,"Total":0}
引用次数: 3

摘要

红树林是短爪蟹的理想栖息地,因为它有营养和庇护。利用最大熵(MaxEnt)模型技术,预测了未来气候变化下波斯湾和阿曼海10种红树林蟹的潜在全球分布。红树林蟹的物种丰富度最高的是波斯湾东北部的霍尔木兹海峡和格什姆岛,以及阿曼北海。研究结果表明,深度和海温是影响红树林蟹类分布的最重要因素。目前输出模型最适合的环境位于波斯湾和阿曼海沿岸,水深16.89 m,温度27.70 ~ 28.08℃,盐度37.21 ~ 40.61 PSS,流速0.01 ~ 0.05 m−1。未来分布模型结果表明,深度3.12 m、温度28.53 ~ 28.92℃、盐度37.21 ~ 40.63 PSS、流速0.01 ~ 0.05 m−1的区域是未来红树林蟹潜在分布的最适宜环境。MaxEnt模型结果显示,在未来的分布范围内,5种(50%)物种将扩大,其余(50%)物种将缩小。模型结果预测,一些物种可能会在未来失去栖息地,一些物种可能会作为入侵物种入侵其他生态系统。因此,这些发现不仅突出了红树林蟹对栖息地丧失的脆弱性,而且还提醒了它们由于未来气候变化而对其他生态系统的潜在入侵。这一结果应被视为红树林系统物种管理的基本准则。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Insights toward the future potential distribution of mangrove crabs in the Persian Gulf and the Sea of Oman

Insights toward the future potential distribution of mangrove crabs in the Persian Gulf and the Sea of Oman

Mangroves are an ideal habitat for brachyuran crabs because of nutritional and shelter support. Using maximum entropy (MaxEnt) modeling technique, we projected the potential global distributions of 10 dominant species of mangrove crabs from the Persian Gulf and the Sea of Oman under future climate change. The highest species richness of mangrove crabs was in the Northeast Persian Gulf, including the Strait of Hormuz and Qeshm Island, as well as the North Sea of Oman. Our results revealed that depth and sea surface temperature (SST) were the most important drivers of distribution of mangrove crabs. The most potential suitable environments are located along the coastal areas of the Persian Gulf, and the Sea of Oman, where the depth is <16.89 m, temperature is between 27.70 and 28.08°C, salinity is between 37.21 and 40.61 PSS, and currents velocity is between 0.01 and 0.05 m−1 for the present output models. Future distribution model outputs showed that, areas with depth <3.12 m, temperature between 28.53 and 28.92°C, salinity between 37.21 and 40.63 PSS, and current velocity between 0.01 and 0.05 m−1 were the most suitable environments for future potential distributions of mangrove crabs. MaxEnt model outputs revealed that five species (50%) will expand and the remaining (50%) will shrink in their future distribution ranges. The model outputs predicted that some of the species might lose their habitat in future, and some might invade other ecosystem as invasive species. These findings thus highlight not only the vulnerability of mangrove crabs to habitat loss, but also alert their potential invasions to other ecosystems due to future climate changes. This outcome should be considered as a basic guideline for species management of mangrove systems.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.60
自引率
0.00%
发文量
13
审稿时长
>12 weeks
期刊介绍: The Journal of Zoological Systematics and Evolutionary Research (JZSER)is a peer-reviewed, international forum for publication of high-quality research on systematic zoology and evolutionary biology. The aim of the journal is to provoke a synthesis of results from morphology, physiology, animal geography, ecology, ethology, evolutionary genetics, population genetics, developmental biology and molecular biology. Besides empirical papers, theoretical contributions and review articles are welcome. Integrative and interdisciplinary contributions are particularly preferred. Purely taxonomic and predominantly cytogenetic manuscripts will not be accepted except in rare cases, and then only at the Editor-in-Chief''s discretion. The same is true for phylogenetic studies based solely on mitochondrial marker sequences without any additional methodological approach. To encourage scientific exchange and discussions, authors are invited to send critical comments on previously published articles. Only papers in English language are accepted.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信