P. Rusinov, Z. Blednova, R. Plomodyalo, A. P. Yurkova, Anastasia A Rusinova, Maxim D Ignatiev, Maxim Semadeni
{"title":"航空航天用功能取向高温复合材料","authors":"P. Rusinov, Z. Blednova, R. Plomodyalo, A. P. Yurkova, Anastasia A Rusinova, Maxim D Ignatiev, Maxim Semadeni","doi":"10.1680/jsuin.22.00016","DOIUrl":null,"url":null,"abstract":"The authors developed technology for obtaining surface composite materials. This technology includes high-energy mechanical treatment, HVOF in a protective atmosphere, subsequent thermomechanical and thermal treatment of ZrCuNiCoTi, cBNNi3AlSiCCoY layers in a protective atmosphere. The processing allowed to increase the adhesive strength of the surface composites, reduce their porosity and improve their functional and operational properties. Staged methods of heat treatment and plastic deformation of surface layers have been developed. These methods stabilize material structure while reducing residual stresses. On the basis of complex X-ray diffraction and electron microscopic studies, the structural parameters of surface composites were determined. It was shown that the ZrCuNiCoTi alloy is in the austenitic-martensitic state and has a nanocrystalline structure with a grain size of 80–120 nm. Meanwhile, the cBNNi3AlSiCCoY alloy consists of many intermetallic phases and inclusions and has a nanosized structure with a grain size of 100–200 nm. A microhardness study of the surface layers in ZrCuNiCoTi – cBNNi3AlSiCCoY composite showed that thermomechanical treatment increases microhardness. The experimental data were statistically processed. As a result, empirical mathematical dependences of the stress amplitude on cyclic durability were compiled. Mechanical tests included tests of NiCoTiZrHf – cBNCoMo, ZrCuNiCoTi – cBNNi3AlSiCCoY, TiNiZrHfCoCu – cBNCoNiAlY composites for multi-cycle fatigue during bending with rotation.","PeriodicalId":22032,"journal":{"name":"Surface Innovations","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2022-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Functionally oriented high-temperature composite materials for aerospace use\",\"authors\":\"P. Rusinov, Z. Blednova, R. Plomodyalo, A. P. Yurkova, Anastasia A Rusinova, Maxim D Ignatiev, Maxim Semadeni\",\"doi\":\"10.1680/jsuin.22.00016\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The authors developed technology for obtaining surface composite materials. This technology includes high-energy mechanical treatment, HVOF in a protective atmosphere, subsequent thermomechanical and thermal treatment of ZrCuNiCoTi, cBNNi3AlSiCCoY layers in a protective atmosphere. The processing allowed to increase the adhesive strength of the surface composites, reduce their porosity and improve their functional and operational properties. Staged methods of heat treatment and plastic deformation of surface layers have been developed. These methods stabilize material structure while reducing residual stresses. On the basis of complex X-ray diffraction and electron microscopic studies, the structural parameters of surface composites were determined. It was shown that the ZrCuNiCoTi alloy is in the austenitic-martensitic state and has a nanocrystalline structure with a grain size of 80–120 nm. Meanwhile, the cBNNi3AlSiCCoY alloy consists of many intermetallic phases and inclusions and has a nanosized structure with a grain size of 100–200 nm. A microhardness study of the surface layers in ZrCuNiCoTi – cBNNi3AlSiCCoY composite showed that thermomechanical treatment increases microhardness. The experimental data were statistically processed. As a result, empirical mathematical dependences of the stress amplitude on cyclic durability were compiled. Mechanical tests included tests of NiCoTiZrHf – cBNCoMo, ZrCuNiCoTi – cBNNi3AlSiCCoY, TiNiZrHfCoCu – cBNCoNiAlY composites for multi-cycle fatigue during bending with rotation.\",\"PeriodicalId\":22032,\"journal\":{\"name\":\"Surface Innovations\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2022-03-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Surface Innovations\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1680/jsuin.22.00016\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Surface Innovations","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1680/jsuin.22.00016","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Functionally oriented high-temperature composite materials for aerospace use
The authors developed technology for obtaining surface composite materials. This technology includes high-energy mechanical treatment, HVOF in a protective atmosphere, subsequent thermomechanical and thermal treatment of ZrCuNiCoTi, cBNNi3AlSiCCoY layers in a protective atmosphere. The processing allowed to increase the adhesive strength of the surface composites, reduce their porosity and improve their functional and operational properties. Staged methods of heat treatment and plastic deformation of surface layers have been developed. These methods stabilize material structure while reducing residual stresses. On the basis of complex X-ray diffraction and electron microscopic studies, the structural parameters of surface composites were determined. It was shown that the ZrCuNiCoTi alloy is in the austenitic-martensitic state and has a nanocrystalline structure with a grain size of 80–120 nm. Meanwhile, the cBNNi3AlSiCCoY alloy consists of many intermetallic phases and inclusions and has a nanosized structure with a grain size of 100–200 nm. A microhardness study of the surface layers in ZrCuNiCoTi – cBNNi3AlSiCCoY composite showed that thermomechanical treatment increases microhardness. The experimental data were statistically processed. As a result, empirical mathematical dependences of the stress amplitude on cyclic durability were compiled. Mechanical tests included tests of NiCoTiZrHf – cBNCoMo, ZrCuNiCoTi – cBNNi3AlSiCCoY, TiNiZrHfCoCu – cBNCoNiAlY composites for multi-cycle fatigue during bending with rotation.
Surface InnovationsCHEMISTRY, PHYSICALMATERIALS SCIENCE, COAT-MATERIALS SCIENCE, COATINGS & FILMS
CiteScore
5.80
自引率
22.90%
发文量
66
期刊介绍:
The material innovations on surfaces, combined with understanding and manipulation of physics and chemistry of functional surfaces and coatings, have exploded in the past decade at an incredibly rapid pace.
Superhydrophobicity, superhydrophlicity, self-cleaning, self-healing, anti-fouling, anti-bacterial, etc., have become important fundamental topics of surface science research community driven by curiosity of physics, chemistry, and biology of interaction phenomenon at surfaces and their enormous potential in practical applications. Materials having controlled-functionality surfaces and coatings are important to the manufacturing of new products for environmental control, liquid manipulation, nanotechnological advances, biomedical engineering, pharmacy, biotechnology, and many others, and are part of the most promising technological innovations of the twenty-first century.