笛卡尔图和电晕积图的对策色数

Q3 Mathematics
Syed Ahtsham ul Haq Bokhary, Tanveer Iqbal, Usman Ali
{"title":"笛卡尔图和电晕积图的对策色数","authors":"Syed Ahtsham ul Haq Bokhary, Tanveer Iqbal, Usman Ali","doi":"10.13069/JACODESMATH.458240","DOIUrl":null,"url":null,"abstract":"The game chromatic number $\\chi_g$ is investigated for Cartesian product $G\\square H$ and corona product $G\\circ H$ of two graphs $G$ and $H$. The exact values for the game chromatic number of Cartesian product graph of $S_{3}\\square S_{n}$ is found, where $S_n$ is a star graph of order $n+1$. This extends previous results of Bartnicki et al. [1] and Sia [5] on the game chromatic number of Cartesian product graphs. Let $P_m$ be the path graph on $m$ vertices and $C_n$ be the cycle graph on $n$ vertices. We have determined the exact values for the game chromatic number of corona product graphs $P_{m}\\circ K_{1}$ and $P_{m}\\circ C_{n}$.","PeriodicalId":37029,"journal":{"name":"Journal of Algebra Combinatorics Discrete Structures and Applications","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Game chromatic number of Cartesian and corona product graphs\",\"authors\":\"Syed Ahtsham ul Haq Bokhary, Tanveer Iqbal, Usman Ali\",\"doi\":\"10.13069/JACODESMATH.458240\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The game chromatic number $\\\\chi_g$ is investigated for Cartesian product $G\\\\square H$ and corona product $G\\\\circ H$ of two graphs $G$ and $H$. The exact values for the game chromatic number of Cartesian product graph of $S_{3}\\\\square S_{n}$ is found, where $S_n$ is a star graph of order $n+1$. This extends previous results of Bartnicki et al. [1] and Sia [5] on the game chromatic number of Cartesian product graphs. Let $P_m$ be the path graph on $m$ vertices and $C_n$ be the cycle graph on $n$ vertices. We have determined the exact values for the game chromatic number of corona product graphs $P_{m}\\\\circ K_{1}$ and $P_{m}\\\\circ C_{n}$.\",\"PeriodicalId\":37029,\"journal\":{\"name\":\"Journal of Algebra Combinatorics Discrete Structures and Applications\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-09-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Algebra Combinatorics Discrete Structures and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.13069/JACODESMATH.458240\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Algebra Combinatorics Discrete Structures and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.13069/JACODESMATH.458240","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 2

摘要

研究了两个图$G$和$H$的笛卡尔积$G\square H$和电晕积$G\circ H$的游戏色数$\chi_g$。求出了$S_{3}\square S_{n}$笛卡尔积图的游戏色数的精确值,其中$S_n$是阶$n+1$的星图。这扩展了Bartnicki et al.[1]和Sia[5]关于笛卡尔积图的博弈色数的先前结果。设$P_m$为$m$顶点上的路径图,$C_n$为$n$顶点上的循环图。我们已经确定了电晕积图$P_{m}\circ K_{1}$和$P_{m}\circ C_{n}$的游戏色数的确切值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Game chromatic number of Cartesian and corona product graphs
The game chromatic number $\chi_g$ is investigated for Cartesian product $G\square H$ and corona product $G\circ H$ of two graphs $G$ and $H$. The exact values for the game chromatic number of Cartesian product graph of $S_{3}\square S_{n}$ is found, where $S_n$ is a star graph of order $n+1$. This extends previous results of Bartnicki et al. [1] and Sia [5] on the game chromatic number of Cartesian product graphs. Let $P_m$ be the path graph on $m$ vertices and $C_n$ be the cycle graph on $n$ vertices. We have determined the exact values for the game chromatic number of corona product graphs $P_{m}\circ K_{1}$ and $P_{m}\circ C_{n}$.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.90
自引率
0.00%
发文量
12
审稿时长
5 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信