{"title":"随机均匀与空间相关相干多支撑激励下网状穹顶的地震响应比较","authors":"Y. Li, Tj Liu, F. Fan, H. Hong","doi":"10.1177/0956059920931012","DOIUrl":null,"url":null,"abstract":"Structures with multiple supports can be sensitive to spatial coherence and spatial correlation. Since the historical recordings are insufficient for selecting records that match predefined inter-support distances of a structure, desired seismic magnitude (or intensity) and site to seismic source distance for structural analysis, such records need to be simulated. In this study, we use a procedure that is extended based on the stochastic point-source method to simulate records for scenario events. The application of the simulated records to a single-layer reticulated dome with multiple supports is presented. The application is aimed at investigating the differences between the responses subjected to spatially uniform excitation and to spatially correlated and coherent multiple-support excitation for a scenario seismic event, assessing the relative importance of the spatial coherence and spatial correlation on the responses, and evaluating the effect of the uncertainty in the spatially correlated and coherent records for a scenario event on the statistics of the seismic responses. The analysis results indicate that the spatial correlation of the Fourier amplitude spectrum has a predominant influence on the linear/nonlinear responses, and the consideration of spatially correlated and coherent excitation at multiple supports is very important. The consideration of uniform excitation severely underestimates the seismic load effects as compared to those obtained under spatially correlated and coherent multiple-support excitation.","PeriodicalId":34964,"journal":{"name":"International Journal of Space Structures","volume":"35 1","pages":"113 - 125"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1177/0956059920931012","citationCount":"0","resultStr":"{\"title\":\"Comparison of seismic responses of a reticulated dome under stochastic uniform and spatially correlated and coherent multiple-support excitation for a scenario seismic event\",\"authors\":\"Y. Li, Tj Liu, F. Fan, H. Hong\",\"doi\":\"10.1177/0956059920931012\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Structures with multiple supports can be sensitive to spatial coherence and spatial correlation. Since the historical recordings are insufficient for selecting records that match predefined inter-support distances of a structure, desired seismic magnitude (or intensity) and site to seismic source distance for structural analysis, such records need to be simulated. In this study, we use a procedure that is extended based on the stochastic point-source method to simulate records for scenario events. The application of the simulated records to a single-layer reticulated dome with multiple supports is presented. The application is aimed at investigating the differences between the responses subjected to spatially uniform excitation and to spatially correlated and coherent multiple-support excitation for a scenario seismic event, assessing the relative importance of the spatial coherence and spatial correlation on the responses, and evaluating the effect of the uncertainty in the spatially correlated and coherent records for a scenario event on the statistics of the seismic responses. The analysis results indicate that the spatial correlation of the Fourier amplitude spectrum has a predominant influence on the linear/nonlinear responses, and the consideration of spatially correlated and coherent excitation at multiple supports is very important. The consideration of uniform excitation severely underestimates the seismic load effects as compared to those obtained under spatially correlated and coherent multiple-support excitation.\",\"PeriodicalId\":34964,\"journal\":{\"name\":\"International Journal of Space Structures\",\"volume\":\"35 1\",\"pages\":\"113 - 125\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-06-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1177/0956059920931012\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Space Structures\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1177/0956059920931012\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Arts and Humanities\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Space Structures","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/0956059920931012","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Arts and Humanities","Score":null,"Total":0}
Comparison of seismic responses of a reticulated dome under stochastic uniform and spatially correlated and coherent multiple-support excitation for a scenario seismic event
Structures with multiple supports can be sensitive to spatial coherence and spatial correlation. Since the historical recordings are insufficient for selecting records that match predefined inter-support distances of a structure, desired seismic magnitude (or intensity) and site to seismic source distance for structural analysis, such records need to be simulated. In this study, we use a procedure that is extended based on the stochastic point-source method to simulate records for scenario events. The application of the simulated records to a single-layer reticulated dome with multiple supports is presented. The application is aimed at investigating the differences between the responses subjected to spatially uniform excitation and to spatially correlated and coherent multiple-support excitation for a scenario seismic event, assessing the relative importance of the spatial coherence and spatial correlation on the responses, and evaluating the effect of the uncertainty in the spatially correlated and coherent records for a scenario event on the statistics of the seismic responses. The analysis results indicate that the spatial correlation of the Fourier amplitude spectrum has a predominant influence on the linear/nonlinear responses, and the consideration of spatially correlated and coherent excitation at multiple supports is very important. The consideration of uniform excitation severely underestimates the seismic load effects as compared to those obtained under spatially correlated and coherent multiple-support excitation.
期刊介绍:
The aim of the journal is to provide an international forum for the interchange of information on all aspects of analysis, design and construction of space structures. The scope of the journal encompasses structures such as single-, double- and multi-layer grids, barrel vaults, domes, towers, folded plates, radar dishes, tensegrity structures, stressed skin assemblies, foldable structures, pneumatic systems and cable arrangements. No limitation on the type of material is imposed and the scope includes structures constructed in steel, aluminium, timber, concrete, plastics, paperboard and fabric.