透镜空间上向量束的稳定可拓性和可拓性

IF 0.5 4区 数学 Q3 MATHEMATICS
M. Imaoka, Teiichi Kobayashi
{"title":"透镜空间上向量束的稳定可拓性和可拓性","authors":"M. Imaoka, Teiichi Kobayashi","doi":"10.32917/hmj/1520478023","DOIUrl":null,"url":null,"abstract":"A bstract . Firstly, we obtain conditions for stable extendibility and extendibility of complex vector bundles over the ð 2 n þ 1 Þ -dimensional standard lens space L n ð p Þ mod p , where p is a prime. Secondly, we prove that the complexification c ð t n ð p ÞÞ of the tangent bundle t n ð p Þ ð¼ t ð L n ð p ÞÞÞ of L n ð p Þ is extendible to L 2 n þ 1 ð p Þ if p is a prime, and is not stably extendible to L 2 n þ 2 ð p Þ if p is an odd prime and n b 2 p (cid:1) 2. Thirdly, we show, for some odd prime p and positive integers n and m with m > n , that t ð L n ð p ÞÞ is stably extendible to L m ð p Þ but is not extendible to L m ð p Þ .","PeriodicalId":55054,"journal":{"name":"Hiroshima Mathematical Journal","volume":"48 1","pages":"57-66"},"PeriodicalIF":0.5000,"publicationDate":"2018-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stable extendibility and extendibility of vector bundles over lens spaces\",\"authors\":\"M. Imaoka, Teiichi Kobayashi\",\"doi\":\"10.32917/hmj/1520478023\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A bstract . Firstly, we obtain conditions for stable extendibility and extendibility of complex vector bundles over the ð 2 n þ 1 Þ -dimensional standard lens space L n ð p Þ mod p , where p is a prime. Secondly, we prove that the complexification c ð t n ð p ÞÞ of the tangent bundle t n ð p Þ ð¼ t ð L n ð p ÞÞÞ of L n ð p Þ is extendible to L 2 n þ 1 ð p Þ if p is a prime, and is not stably extendible to L 2 n þ 2 ð p Þ if p is an odd prime and n b 2 p (cid:1) 2. Thirdly, we show, for some odd prime p and positive integers n and m with m > n , that t ð L n ð p ÞÞ is stably extendible to L m ð p Þ but is not extendible to L m ð p Þ .\",\"PeriodicalId\":55054,\"journal\":{\"name\":\"Hiroshima Mathematical Journal\",\"volume\":\"48 1\",\"pages\":\"57-66\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2018-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Hiroshima Mathematical Journal\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.32917/hmj/1520478023\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Hiroshima Mathematical Journal","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.32917/hmj/1520478023","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

一个混蛋。Firstly,我们得到条件为马厩extendibility》和bundle情结向量extendibility完毕《ð2 nþ1Þ-dimensional标准版的太空L n pðÞmod p, p是a prime在哪里。Secondly,我们证明那个《complexification c p t nððÞÞ相切之穿t p nðÞð¼t p L nððÞÞÞn pðÞ是extendible到我的2个nþ1ðpÞ如果p是a prime, and is not stably extendible to L 2 nþðpÞ如果p是一个古怪的擎天柱和n b p (cid): 1) 2。Thirdly,我们的节目,因为一些奇怪的擎天柱积极integers n和m和p p > n,那t L nððÞÞ是stably extendible to L mðpÞ但是extendible to L mðpÞ音符。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Stable extendibility and extendibility of vector bundles over lens spaces
A bstract . Firstly, we obtain conditions for stable extendibility and extendibility of complex vector bundles over the ð 2 n þ 1 Þ -dimensional standard lens space L n ð p Þ mod p , where p is a prime. Secondly, we prove that the complexification c ð t n ð p ÞÞ of the tangent bundle t n ð p Þ ð¼ t ð L n ð p ÞÞÞ of L n ð p Þ is extendible to L 2 n þ 1 ð p Þ if p is a prime, and is not stably extendible to L 2 n þ 2 ð p Þ if p is an odd prime and n b 2 p (cid:1) 2. Thirdly, we show, for some odd prime p and positive integers n and m with m > n , that t ð L n ð p ÞÞ is stably extendible to L m ð p Þ but is not extendible to L m ð p Þ .
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.60
自引率
0.00%
发文量
12
审稿时长
>12 weeks
期刊介绍: Hiroshima Mathematical Journal (HMJ) is a continuation of Journal of Science of the Hiroshima University, Series A, Vol. 1 - 24 (1930 - 1960), and Journal of Science of the Hiroshima University, Series A - I , Vol. 25 - 34 (1961 - 1970). Starting with Volume 4 (1974), each volume of HMJ consists of three numbers annually. This journal publishes original papers in pure and applied mathematics. HMJ is an (electronically) open access journal from Volume 36, Number 1.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信