F补充模块

IF 0.3 Q4 MATHEMATICS, APPLIED
S. Özdemir
{"title":"F补充模块","authors":"S. Özdemir","doi":"10.12958/adm1185","DOIUrl":null,"url":null,"abstract":"Let R be a ring, let M be a left R-module, and let U,V,F be submodules of M with F proper. We call V an F-supplement of U in M if V is minimal in the set F⊆X⊆M such that U+X=M, or equivalently, F⊆V, U+V=M and U∩V is F-small in V. If every submodule of M has an F-supplement, then we call M an F-supplemented module. In this paper, we introduce and investigate F-supplement submodules and (amply) F-supplemented modules. We give some properties of these modules, and characterize finitely generated (amply) F-supplemented modules in terms of their certain submodules.","PeriodicalId":44176,"journal":{"name":"Algebra & Discrete Mathematics","volume":"1 1","pages":""},"PeriodicalIF":0.3000,"publicationDate":"2020-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"F-supplemented modules\",\"authors\":\"S. Özdemir\",\"doi\":\"10.12958/adm1185\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let R be a ring, let M be a left R-module, and let U,V,F be submodules of M with F proper. We call V an F-supplement of U in M if V is minimal in the set F⊆X⊆M such that U+X=M, or equivalently, F⊆V, U+V=M and U∩V is F-small in V. If every submodule of M has an F-supplement, then we call M an F-supplemented module. In this paper, we introduce and investigate F-supplement submodules and (amply) F-supplemented modules. We give some properties of these modules, and characterize finitely generated (amply) F-supplemented modules in terms of their certain submodules.\",\"PeriodicalId\":44176,\"journal\":{\"name\":\"Algebra & Discrete Mathematics\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2020-12-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Algebra & Discrete Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.12958/adm1185\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algebra & Discrete Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12958/adm1185","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 1

摘要

设R是环,设M是左R模,设U,V,F是M的子模。我们称V为U在M中的F-补,如果V在集合F⊆X \8838M中是极小的,使得U+X=M,或者等价地,F≾V,U+V=M和UåV在V中是F-小的。如果M的每个子模都有F-补,那么我们称M为F-补模。在本文中,我们引入并研究了F-补充子模和(充分)F-补充模。我们给出了这些模的一些性质,并用它们的某些子模刻画了有限生成(充分)F-补模。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
F-supplemented modules
Let R be a ring, let M be a left R-module, and let U,V,F be submodules of M with F proper. We call V an F-supplement of U in M if V is minimal in the set F⊆X⊆M such that U+X=M, or equivalently, F⊆V, U+V=M and U∩V is F-small in V. If every submodule of M has an F-supplement, then we call M an F-supplemented module. In this paper, we introduce and investigate F-supplement submodules and (amply) F-supplemented modules. We give some properties of these modules, and characterize finitely generated (amply) F-supplemented modules in terms of their certain submodules.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Algebra & Discrete Mathematics
Algebra & Discrete Mathematics MATHEMATICS, APPLIED-
CiteScore
0.50
自引率
0.00%
发文量
11
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信