{"title":"Ostrander关于有向图拉普拉斯特征向量的三个猜想","authors":"Yaokun Wu, Da Zhao","doi":"10.26493/2590-9770.1420.B57","DOIUrl":null,"url":null,"abstract":"Ostrander proposed three conjectures on the connections between topological properties of a weighted digraph and combinatorial properties of its Laplacian eigenvectors. We verify one of his conjectures, give counterexamples to the other two, and then seek for related valid connections and generalizations to Schrodinger operators on countable digraphs. We suggest the open question of deciding if the countability assumption can be dropped from our main results.","PeriodicalId":36246,"journal":{"name":"Art of Discrete and Applied Mathematics","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Three conjectures of Ostrander on digraph Laplacian eigenvectors\",\"authors\":\"Yaokun Wu, Da Zhao\",\"doi\":\"10.26493/2590-9770.1420.B57\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Ostrander proposed three conjectures on the connections between topological properties of a weighted digraph and combinatorial properties of its Laplacian eigenvectors. We verify one of his conjectures, give counterexamples to the other two, and then seek for related valid connections and generalizations to Schrodinger operators on countable digraphs. We suggest the open question of deciding if the countability assumption can be dropped from our main results.\",\"PeriodicalId\":36246,\"journal\":{\"name\":\"Art of Discrete and Applied Mathematics\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-07-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Art of Discrete and Applied Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.26493/2590-9770.1420.B57\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Art of Discrete and Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26493/2590-9770.1420.B57","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
Three conjectures of Ostrander on digraph Laplacian eigenvectors
Ostrander proposed three conjectures on the connections between topological properties of a weighted digraph and combinatorial properties of its Laplacian eigenvectors. We verify one of his conjectures, give counterexamples to the other two, and then seek for related valid connections and generalizations to Schrodinger operators on countable digraphs. We suggest the open question of deciding if the countability assumption can be dropped from our main results.