{"title":"拟线性抛物型随机偏微分方程的指数行为与稳定性","authors":"Xiuwei Yin, Guangjun Shen, Jiang-Lun Wu","doi":"10.1142/s0219530521500172","DOIUrl":null,"url":null,"abstract":"In this paper, we study the stability of quasilinear parabolic stochastic partial differential equations with multiplicative noise, which are neither monotone nor locally monotone. The exponential mean square stability and pathwise exponential stability of the solutions are established. Moreover, under certain hypothesis on the stochastic perturbations, pathwise exponential stability can be derived, without utilizing the mean square stability.","PeriodicalId":55519,"journal":{"name":"Analysis and Applications","volume":" ","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2021-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"The exponential behavior and stabilizability of quasilinear parabolic stochastic partial differential equation\",\"authors\":\"Xiuwei Yin, Guangjun Shen, Jiang-Lun Wu\",\"doi\":\"10.1142/s0219530521500172\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we study the stability of quasilinear parabolic stochastic partial differential equations with multiplicative noise, which are neither monotone nor locally monotone. The exponential mean square stability and pathwise exponential stability of the solutions are established. Moreover, under certain hypothesis on the stochastic perturbations, pathwise exponential stability can be derived, without utilizing the mean square stability.\",\"PeriodicalId\":55519,\"journal\":{\"name\":\"Analysis and Applications\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2021-08-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Analysis and Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1142/s0219530521500172\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analysis and Applications","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s0219530521500172","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
The exponential behavior and stabilizability of quasilinear parabolic stochastic partial differential equation
In this paper, we study the stability of quasilinear parabolic stochastic partial differential equations with multiplicative noise, which are neither monotone nor locally monotone. The exponential mean square stability and pathwise exponential stability of the solutions are established. Moreover, under certain hypothesis on the stochastic perturbations, pathwise exponential stability can be derived, without utilizing the mean square stability.
期刊介绍:
Analysis and Applications publishes high quality mathematical papers that treat those parts of analysis which have direct or potential applications to the physical and biological sciences and engineering. Some of the topics from analysis include approximation theory, asymptotic analysis, calculus of variations, integral equations, integral transforms, ordinary and partial differential equations, delay differential equations, and perturbation methods. The primary aim of the journal is to encourage the development of new techniques and results in applied analysis.