m等轴张量积

IF 0.3 Q4 MATHEMATICS
Bhagawati Prashad Duggal, I. Kim
{"title":"m等轴张量积","authors":"Bhagawati Prashad Duggal, I. Kim","doi":"10.1515/conop-2022-0142","DOIUrl":null,"url":null,"abstract":"Abstract Given Banach space operators S i {S}_{i} and T i {T}_{i} , i = 1 , 2 i=1,2 , we use elementary properties of the left and right multiplication operators to prove, that if the tensor products pair ( S 1 ⊗ S 2 , T 1 ⊗ T 2 ) \\left({S}_{1}\\otimes {S}_{2},{T}_{1}\\otimes {T}_{2}) is strictly m m -isometric, i.e., Δ S 1 ⊗ S 2 , T 1 ⊗ T 2 m ( I ⊗ I ) = ∑ j = 0 m ( − 1 ) j m j ( S 1 ⊗ S 2 ) m − j ( T 1 ⊗ T 2 ) m − j = 0 {\\Delta }_{{S}_{1}\\otimes {S}_{2},{T}_{1}\\otimes {T}_{2}}^{m}\\left(I\\otimes I)={\\sum }_{j=0}^{m}{\\left(-1)}^{j}\\left(\\begin{array}{c}m\\\\ j\\end{array}\\right){\\left({S}_{1}\\otimes {S}_{2})}^{m-j}{\\left({T}_{1}\\otimes {T}_{2})}^{m-j}=0 , then there exist a non-zero scalar c c and positive integers m 1 , m 2 ≤ m {m}_{1},{m}_{2}\\le m such that m = m 1 + m 2 − 1 m={m}_{1}+{m}_{2}-1 , ( S 1 , c T 1 ) \\left({S}_{1},c{T}_{1}) is strict- m 1 {m}_{1} -isometric and S 2 , 1 c T 2 \\left({S}_{2},\\frac{1}{c}{T}_{2}\\right) is strict m 2 {m}_{2} -isometric.","PeriodicalId":53800,"journal":{"name":"Concrete Operators","volume":" ","pages":""},"PeriodicalIF":0.3000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"m-Isometric tensor products\",\"authors\":\"Bhagawati Prashad Duggal, I. Kim\",\"doi\":\"10.1515/conop-2022-0142\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Given Banach space operators S i {S}_{i} and T i {T}_{i} , i = 1 , 2 i=1,2 , we use elementary properties of the left and right multiplication operators to prove, that if the tensor products pair ( S 1 ⊗ S 2 , T 1 ⊗ T 2 ) \\\\left({S}_{1}\\\\otimes {S}_{2},{T}_{1}\\\\otimes {T}_{2}) is strictly m m -isometric, i.e., Δ S 1 ⊗ S 2 , T 1 ⊗ T 2 m ( I ⊗ I ) = ∑ j = 0 m ( − 1 ) j m j ( S 1 ⊗ S 2 ) m − j ( T 1 ⊗ T 2 ) m − j = 0 {\\\\Delta }_{{S}_{1}\\\\otimes {S}_{2},{T}_{1}\\\\otimes {T}_{2}}^{m}\\\\left(I\\\\otimes I)={\\\\sum }_{j=0}^{m}{\\\\left(-1)}^{j}\\\\left(\\\\begin{array}{c}m\\\\\\\\ j\\\\end{array}\\\\right){\\\\left({S}_{1}\\\\otimes {S}_{2})}^{m-j}{\\\\left({T}_{1}\\\\otimes {T}_{2})}^{m-j}=0 , then there exist a non-zero scalar c c and positive integers m 1 , m 2 ≤ m {m}_{1},{m}_{2}\\\\le m such that m = m 1 + m 2 − 1 m={m}_{1}+{m}_{2}-1 , ( S 1 , c T 1 ) \\\\left({S}_{1},c{T}_{1}) is strict- m 1 {m}_{1} -isometric and S 2 , 1 c T 2 \\\\left({S}_{2},\\\\frac{1}{c}{T}_{2}\\\\right) is strict m 2 {m}_{2} -isometric.\",\"PeriodicalId\":53800,\"journal\":{\"name\":\"Concrete Operators\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Concrete Operators\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/conop-2022-0142\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Concrete Operators","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/conop-2022-0142","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

摘要给定Banach空间算子S i{S}_{i} 和T i{T}_{i} ,i=1,2i=1,2,我们利用左、右乘法算子的初等性质证明,如果张量积对(S1⊗S2,T1 \8855;T2)\left({S}_{1} \时间{S}_{2} ,{T}_{1} \时间{T}_{2} )是严格的m-等距,即ΔS1⊗S2,T1 \8855;T2 m(i \8855 i)=∑j=0 m(−1)j m j(S1 \8855;S2)m−j(T1 \8855 ; T2)m−j=0{\Delta}_{{S}_{1} \时间{S}_{2} ,{T}_{1} \时间{T}_{2} {^{m}\left(I\otimes I)={\sum}_{j=0}^}m}}{\lefort(-1)}^{j}\lift(\ begin{array}{c}m\\j\end{array}\right){\left({S}_{1} \时间{S}_{2} )^{m-j}{\left({T}_{1} \时间{T}_{2} )}^{m-j}=0,则存在非零标量c和正整数m1,m2≤m{m}_{1} ,{m}_{2} 使m=m 1+m 2−1 m={m}_{1}+{m}_{2}-1,(S1,c T1)\左({S}_{1} ,c{T}_{1} )是严格的-m 1{m}_{1} -等距和S2,1 c T 2\left({S}_{2} ,\frac{1}{c}{T}_{2} \right)是严格的m2{m}_{2} -等距。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
m-Isometric tensor products
Abstract Given Banach space operators S i {S}_{i} and T i {T}_{i} , i = 1 , 2 i=1,2 , we use elementary properties of the left and right multiplication operators to prove, that if the tensor products pair ( S 1 ⊗ S 2 , T 1 ⊗ T 2 ) \left({S}_{1}\otimes {S}_{2},{T}_{1}\otimes {T}_{2}) is strictly m m -isometric, i.e., Δ S 1 ⊗ S 2 , T 1 ⊗ T 2 m ( I ⊗ I ) = ∑ j = 0 m ( − 1 ) j m j ( S 1 ⊗ S 2 ) m − j ( T 1 ⊗ T 2 ) m − j = 0 {\Delta }_{{S}_{1}\otimes {S}_{2},{T}_{1}\otimes {T}_{2}}^{m}\left(I\otimes I)={\sum }_{j=0}^{m}{\left(-1)}^{j}\left(\begin{array}{c}m\\ j\end{array}\right){\left({S}_{1}\otimes {S}_{2})}^{m-j}{\left({T}_{1}\otimes {T}_{2})}^{m-j}=0 , then there exist a non-zero scalar c c and positive integers m 1 , m 2 ≤ m {m}_{1},{m}_{2}\le m such that m = m 1 + m 2 − 1 m={m}_{1}+{m}_{2}-1 , ( S 1 , c T 1 ) \left({S}_{1},c{T}_{1}) is strict- m 1 {m}_{1} -isometric and S 2 , 1 c T 2 \left({S}_{2},\frac{1}{c}{T}_{2}\right) is strict m 2 {m}_{2} -isometric.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Concrete Operators
Concrete Operators MATHEMATICS-
CiteScore
1.00
自引率
16.70%
发文量
10
审稿时长
22 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信