具有空间相关临界阻尼的双线性波动方程的全局存在性

Pub Date : 2021-06-11 DOI:10.2969/jmsj/87388738
M. Sobajima
{"title":"具有空间相关临界阻尼的双线性波动方程的全局存在性","authors":"M. Sobajima","doi":"10.2969/jmsj/87388738","DOIUrl":null,"url":null,"abstract":"The global existence for semilinear wave equations with space-dependent critical damping ∂ t u−∆u+ V0 |x| ∂tu = f(u) in an exterior domain is dealt with, where f(u) = |u|p−1u and f(u) = |u| are in mind. Existence and non-existence of global-in-time solutions are discussed. To obtain global existence, a weighted energy estimate for the linear problem is crucial. The proof of such a weighted energy estimate contains an alternative proof of energy estimates established by Ikehata–Todorova–Yordanov [J. Math. Soc. Japan (2013), 183–236] but this clarifies the precise independence of the location of the support of initial data. The blowup phenomena is verified by using a test function method with positive harmonic functions satisfying the Dirichlet boundary condition. Mathematics Subject Classification (2010): Primary:35L71, 35A01, Secondary:35L20, 35B40,","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"On global existence for semilinear wave equations with space-dependent critical damping\",\"authors\":\"M. Sobajima\",\"doi\":\"10.2969/jmsj/87388738\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The global existence for semilinear wave equations with space-dependent critical damping ∂ t u−∆u+ V0 |x| ∂tu = f(u) in an exterior domain is dealt with, where f(u) = |u|p−1u and f(u) = |u| are in mind. Existence and non-existence of global-in-time solutions are discussed. To obtain global existence, a weighted energy estimate for the linear problem is crucial. The proof of such a weighted energy estimate contains an alternative proof of energy estimates established by Ikehata–Todorova–Yordanov [J. Math. Soc. Japan (2013), 183–236] but this clarifies the precise independence of the location of the support of initial data. The blowup phenomena is verified by using a test function method with positive harmonic functions satisfying the Dirichlet boundary condition. Mathematics Subject Classification (2010): Primary:35L71, 35A01, Secondary:35L20, 35B40,\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2021-06-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.2969/jmsj/87388738\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2969/jmsj/87388738","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

讨论了具有空间相关临界阻尼∂tu−∆u+ V0 |x|∂tu = f(u)的半线性波动方程在外部域的整体存在性,其中f(u) = |u|p−1u和f(u) = |u|。讨论了全局实时解的存在性和不存在性。为了获得全局存在性,对线性问题进行加权能量估计是至关重要的。这种加权能量估计的证明包含了Ikehata-Todorova-Yordanov建立的能量估计的替代证明[J]。数学。Soc。日本(2013),183-236],但这澄清了初始数据支持位置的精确独立性。用满足Dirichlet边界条件的正调和函数法验证了爆破现象。数学学科分类(2010):小学:35L71, 35A01,中学:35L20, 35B40,
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
On global existence for semilinear wave equations with space-dependent critical damping
The global existence for semilinear wave equations with space-dependent critical damping ∂ t u−∆u+ V0 |x| ∂tu = f(u) in an exterior domain is dealt with, where f(u) = |u|p−1u and f(u) = |u| are in mind. Existence and non-existence of global-in-time solutions are discussed. To obtain global existence, a weighted energy estimate for the linear problem is crucial. The proof of such a weighted energy estimate contains an alternative proof of energy estimates established by Ikehata–Todorova–Yordanov [J. Math. Soc. Japan (2013), 183–236] but this clarifies the precise independence of the location of the support of initial data. The blowup phenomena is verified by using a test function method with positive harmonic functions satisfying the Dirichlet boundary condition. Mathematics Subject Classification (2010): Primary:35L71, 35A01, Secondary:35L20, 35B40,
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信