关系的逻辑约简:从关系数据库到皮尔斯的约简论文

Pub Date : 2023-06-07 DOI:10.1093/jigpal/jzad010
Sergiy Koshkin
{"title":"关系的逻辑约简:从关系数据库到皮尔斯的约简论文","authors":"Sergiy Koshkin","doi":"10.1093/jigpal/jzad010","DOIUrl":null,"url":null,"abstract":"\n We study logical reduction (factorization) of relations into relations of lower arity by Boolean or relative products that come from applying conjunctions and existential quantifiers to predicates, i.e. by primitive positive formulas of predicate calculus. Our algebraic framework unifies natural joins and data dependencies of database theory and relational algebra of clone theory with the bond algebra of C.S. Peirce. We also offer new constructions of reductions, systematically study irreducible relations and reductions to them and introduce a new characteristic of relations, ternarity, that measures their ‘complexity of relating’ and allows to refine reduction results. In particular, we refine Peirce’s controversial reduction thesis, and show that reducibility behaviour is dramatically different on finite and infinite domains.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Logical reduction of relations: From relational databases to Peirce’s reduction thesis\",\"authors\":\"Sergiy Koshkin\",\"doi\":\"10.1093/jigpal/jzad010\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n We study logical reduction (factorization) of relations into relations of lower arity by Boolean or relative products that come from applying conjunctions and existential quantifiers to predicates, i.e. by primitive positive formulas of predicate calculus. Our algebraic framework unifies natural joins and data dependencies of database theory and relational algebra of clone theory with the bond algebra of C.S. Peirce. We also offer new constructions of reductions, systematically study irreducible relations and reductions to them and introduce a new characteristic of relations, ternarity, that measures their ‘complexity of relating’ and allows to refine reduction results. In particular, we refine Peirce’s controversial reduction thesis, and show that reducibility behaviour is dramatically different on finite and infinite domains.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-06-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1093/jigpal/jzad010\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/jigpal/jzad010","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们研究了将连接词和存在量词应用于谓词的布尔或相对乘积,即谓词演算的原始正公式,将关系逻辑化简(因子分解)为较低程度的关系。我们的代数框架将克隆理论的数据库理论和关系代数的自然连接和数据依赖性与皮尔斯的键代数相统一。我们还提供了新的约简构造,系统地研究了不可约关系及其约简,并引入了关系的一个新特征,即三元性,它衡量了它们的“关联复杂性”,并允许改进约简结果。特别地,我们改进了皮尔斯有争议的归约定理,并证明了在有限域和无限域上的可约性行为是显著不同的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Logical reduction of relations: From relational databases to Peirce’s reduction thesis
We study logical reduction (factorization) of relations into relations of lower arity by Boolean or relative products that come from applying conjunctions and existential quantifiers to predicates, i.e. by primitive positive formulas of predicate calculus. Our algebraic framework unifies natural joins and data dependencies of database theory and relational algebra of clone theory with the bond algebra of C.S. Peirce. We also offer new constructions of reductions, systematically study irreducible relations and reductions to them and introduce a new characteristic of relations, ternarity, that measures their ‘complexity of relating’ and allows to refine reduction results. In particular, we refine Peirce’s controversial reduction thesis, and show that reducibility behaviour is dramatically different on finite and infinite domains.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信