{"title":"随机森林方法在测井资料油水层识别中的应用——以辽河坳陷为例","authors":"Chunlei Dai, S. Shi, Chao Song","doi":"10.15446/esrj.v27n1.104741","DOIUrl":null,"url":null,"abstract":"\n\n\n\nAccurate identification of oil and water layers is the basis of qualitative evaluation of reservoir fluid properties or industrial value and selection of testing layers of the well. The traditional oil and water layer identification is mainly based on the extensive use of the well’s logging and logging data, which is inefficient and easy to leak interpretation or misinterpretation for those reservoirs with complex geological conditions. In this paper, the random forest method of machine learning is used to select the lithology, porosity, permeability, movable fluid, oil saturation, S0, S1, S2, Tmax of rock as characteristics; smote oversampling is used to expand the sample, and the packet estimation is used to establish the oil and water layer identification model. This method is simple and easy to use, not prone to severe overfitting, and can find the potential rules in the data. The classification performance is excellent, and the accuracy rate can reach more than 89.9%, which solves the problem of low accuracy in oil-water layer identification in the past.\n\n\n\n","PeriodicalId":11456,"journal":{"name":"Earth Sciences Research Journal","volume":" ","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2023-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Application of Random Forest method in oil and water layer identification of logging data: a case study of the Liaohe depression\",\"authors\":\"Chunlei Dai, S. Shi, Chao Song\",\"doi\":\"10.15446/esrj.v27n1.104741\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n\\n\\n\\nAccurate identification of oil and water layers is the basis of qualitative evaluation of reservoir fluid properties or industrial value and selection of testing layers of the well. The traditional oil and water layer identification is mainly based on the extensive use of the well’s logging and logging data, which is inefficient and easy to leak interpretation or misinterpretation for those reservoirs with complex geological conditions. In this paper, the random forest method of machine learning is used to select the lithology, porosity, permeability, movable fluid, oil saturation, S0, S1, S2, Tmax of rock as characteristics; smote oversampling is used to expand the sample, and the packet estimation is used to establish the oil and water layer identification model. This method is simple and easy to use, not prone to severe overfitting, and can find the potential rules in the data. The classification performance is excellent, and the accuracy rate can reach more than 89.9%, which solves the problem of low accuracy in oil-water layer identification in the past.\\n\\n\\n\\n\",\"PeriodicalId\":11456,\"journal\":{\"name\":\"Earth Sciences Research Journal\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-05-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Earth Sciences Research Journal\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.15446/esrj.v27n1.104741\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Earth Sciences Research Journal","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.15446/esrj.v27n1.104741","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
Application of Random Forest method in oil and water layer identification of logging data: a case study of the Liaohe depression
Accurate identification of oil and water layers is the basis of qualitative evaluation of reservoir fluid properties or industrial value and selection of testing layers of the well. The traditional oil and water layer identification is mainly based on the extensive use of the well’s logging and logging data, which is inefficient and easy to leak interpretation or misinterpretation for those reservoirs with complex geological conditions. In this paper, the random forest method of machine learning is used to select the lithology, porosity, permeability, movable fluid, oil saturation, S0, S1, S2, Tmax of rock as characteristics; smote oversampling is used to expand the sample, and the packet estimation is used to establish the oil and water layer identification model. This method is simple and easy to use, not prone to severe overfitting, and can find the potential rules in the data. The classification performance is excellent, and the accuracy rate can reach more than 89.9%, which solves the problem of low accuracy in oil-water layer identification in the past.
期刊介绍:
ESRJ publishes the results from technical and scientific research on various disciplines of Earth Sciences and its interactions with several engineering applications.
Works will only be considered if not previously published anywhere else. Manuscripts must contain information derived from scientific research projects or technical developments. The ideas expressed by publishing in ESRJ are the sole responsibility of the authors.
We gladly consider manuscripts in the following subject areas:
-Geophysics: Seismology, Seismic Prospecting, Gravimetric, Magnetic and Electrical methods.
-Geology: Volcanology, Tectonics, Neotectonics, Geomorphology, Geochemistry, Geothermal Energy, ---Glaciology, Ore Geology, Environmental Geology, Geological Hazards.
-Geodesy: Geodynamics, GPS measurements applied to geological and geophysical problems.
-Basic Sciences and Computer Science applied to Geology and Geophysics.
-Meteorology and Atmospheric Sciences.
-Oceanography.
-Planetary Sciences.
-Engineering: Earthquake Engineering and Seismology Engineering, Geological Engineering, Geotechnics.