{"title":"关于常标曲率Kähler度量(I)——先验估计","authors":"Xiuxiong Chen, Jingrui Cheng","doi":"10.1090/jams/967","DOIUrl":null,"url":null,"abstract":"In this paper, we derive apriori estimates for constant scalar curvature Kähler metrics on a compact Kähler manifold. We show that higher order derivatives can be estimated in terms of a \n\n \n \n C\n 0\n \n C^0\n \n\n bound for the Kähler potential.","PeriodicalId":54764,"journal":{"name":"Journal of the American Mathematical Society","volume":" ","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2017-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"100","resultStr":"{\"title\":\"On the constant scalar curvature Kähler metrics (I)—A priori estimates\",\"authors\":\"Xiuxiong Chen, Jingrui Cheng\",\"doi\":\"10.1090/jams/967\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we derive apriori estimates for constant scalar curvature Kähler metrics on a compact Kähler manifold. We show that higher order derivatives can be estimated in terms of a \\n\\n \\n \\n C\\n 0\\n \\n C^0\\n \\n\\n bound for the Kähler potential.\",\"PeriodicalId\":54764,\"journal\":{\"name\":\"Journal of the American Mathematical Society\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2017-12-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"100\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the American Mathematical Society\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1090/jams/967\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/jams/967","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
On the constant scalar curvature Kähler metrics (I)—A priori estimates
In this paper, we derive apriori estimates for constant scalar curvature Kähler metrics on a compact Kähler manifold. We show that higher order derivatives can be estimated in terms of a
C
0
C^0
bound for the Kähler potential.
期刊介绍:
All articles submitted to this journal are peer-reviewed. The AMS has a single blind peer-review process in which the reviewers know who the authors of the manuscript are, but the authors do not have access to the information on who the peer reviewers are.
This journal is devoted to research articles of the highest quality in all areas of pure and applied mathematics.