Lp弦Minkowski问题

IF 2.1 2区 数学 Q1 MATHEMATICS
Dongmeng Xi, Deane Yang, Gaoyong Zhang, Yiming Zhao
{"title":"Lp弦Minkowski问题","authors":"Dongmeng Xi, Deane Yang, Gaoyong Zhang, Yiming Zhao","doi":"10.1515/ans-2022-0041","DOIUrl":null,"url":null,"abstract":"Abstract Chord measures are newly discovered translation-invariant geometric measures of convex bodies in R n {{\\mathbb{R}}}^{n} , in addition to Aleksandrov-Fenchel-Jessen’s area measures. They are constructed from chord integrals of convex bodies and random lines. Prescribing the L p {L}_{p} chord measures is called the L p {L}_{p} chord Minkowski problem in the L p {L}_{p} Brunn-Minkowski theory, which includes the L p {L}_{p} Minkowski problem as a special case. This article solves the L p {L}_{p} chord Minkowski problem when p > 1 p\\gt 1 and the symmetric case of 0 < p < 1 0\\lt p\\lt 1 .","PeriodicalId":7191,"journal":{"name":"Advanced Nonlinear Studies","volume":" ","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"The Lp chord Minkowski problem\",\"authors\":\"Dongmeng Xi, Deane Yang, Gaoyong Zhang, Yiming Zhao\",\"doi\":\"10.1515/ans-2022-0041\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Chord measures are newly discovered translation-invariant geometric measures of convex bodies in R n {{\\\\mathbb{R}}}^{n} , in addition to Aleksandrov-Fenchel-Jessen’s area measures. They are constructed from chord integrals of convex bodies and random lines. Prescribing the L p {L}_{p} chord measures is called the L p {L}_{p} chord Minkowski problem in the L p {L}_{p} Brunn-Minkowski theory, which includes the L p {L}_{p} Minkowski problem as a special case. This article solves the L p {L}_{p} chord Minkowski problem when p > 1 p\\\\gt 1 and the symmetric case of 0 < p < 1 0\\\\lt p\\\\lt 1 .\",\"PeriodicalId\":7191,\"journal\":{\"name\":\"Advanced Nonlinear Studies\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Nonlinear Studies\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/ans-2022-0041\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Nonlinear Studies","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/ans-2022-0041","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 8

摘要

弦测度是在R n {{\mathbb{R}}}^{n}中新发现的凸体的平移不变几何测度,是对aleksandrov - fenchell - jessen面积测度的补充。它们由凸体和随机线的弦积分构成。在L p {L} {p} Brunn-Minkowski理论中,规定L p {L} {p}弦测度称为L p {L} {p}弦Minkowski问题,其中包括L p {L} {p} Minkowski问题作为一个特例。本文解决了p bbb1p \gt 1时的L p {L}_{p}弦Minkowski问题以及0 < p < 1 0\lt p\lt 1的对称情况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Lp chord Minkowski problem
Abstract Chord measures are newly discovered translation-invariant geometric measures of convex bodies in R n {{\mathbb{R}}}^{n} , in addition to Aleksandrov-Fenchel-Jessen’s area measures. They are constructed from chord integrals of convex bodies and random lines. Prescribing the L p {L}_{p} chord measures is called the L p {L}_{p} chord Minkowski problem in the L p {L}_{p} Brunn-Minkowski theory, which includes the L p {L}_{p} Minkowski problem as a special case. This article solves the L p {L}_{p} chord Minkowski problem when p > 1 p\gt 1 and the symmetric case of 0 < p < 1 0\lt p\lt 1 .
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.00
自引率
5.60%
发文量
22
审稿时长
12 months
期刊介绍: Advanced Nonlinear Studies is aimed at publishing papers on nonlinear problems, particulalry those involving Differential Equations, Dynamical Systems, and related areas. It will also publish novel and interesting applications of these areas to problems in engineering and the sciences. Papers submitted to this journal must contain original, timely, and significant results. Articles will generally, but not always, be published in the order when the final copies were received.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信