{"title":"关于具有奇异或消失径向势的拟线性Schrödinger方程的一个注记","authors":"M. Badiale, M. Guida, S. Rolando","doi":"10.57262/die035-1112-659","DOIUrl":null,"url":null,"abstract":". In this note we complete the study of [3], where we got existence results for the quasilinear elliptic equation N , with singular or vanishing continuous radial potentials V ( r ), K ( r ). In [3] we assumed, for technical reasons, that K ( r ) was vanishing as r → 0, while in the present paper we remove this obstruction. To face the problem we apply a suitable change of variables w = f ( u ) and we find existence of non negative solutions by the application of variational methods. Our solutions satisfy a weak formulations of the above equation, but they are in fact classical solutions in R N \\ { 0 } . The nonlinearity g has a double-power behavior, whose standard example is g ( t ) = min { t q 1 − 1 , t q 2 − 1 } ( t > 0), recovering the usual case of a single-power behavior when q 1 = q 2 .","PeriodicalId":50581,"journal":{"name":"Differential and Integral Equations","volume":" ","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2022-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A note on quasilinear Schrödinger equations with singular or vanishing radial potentials\",\"authors\":\"M. Badiale, M. Guida, S. Rolando\",\"doi\":\"10.57262/die035-1112-659\",\"DOIUrl\":null,\"url\":null,\"abstract\":\". In this note we complete the study of [3], where we got existence results for the quasilinear elliptic equation N , with singular or vanishing continuous radial potentials V ( r ), K ( r ). In [3] we assumed, for technical reasons, that K ( r ) was vanishing as r → 0, while in the present paper we remove this obstruction. To face the problem we apply a suitable change of variables w = f ( u ) and we find existence of non negative solutions by the application of variational methods. Our solutions satisfy a weak formulations of the above equation, but they are in fact classical solutions in R N \\\\ { 0 } . The nonlinearity g has a double-power behavior, whose standard example is g ( t ) = min { t q 1 − 1 , t q 2 − 1 } ( t > 0), recovering the usual case of a single-power behavior when q 1 = q 2 .\",\"PeriodicalId\":50581,\"journal\":{\"name\":\"Differential and Integral Equations\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2022-10-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Differential and Integral Equations\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.57262/die035-1112-659\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Differential and Integral Equations","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.57262/die035-1112-659","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
. 本文完成了[3]的研究,得到了具有奇异或消失连续径向势V (r), K (r)的拟线性椭圆方程N的存在性结果。在[3]中,由于技术原因,我们假设K (r)在r→0时消失,而在本文中,我们去掉了这个障碍。为了解决这个问题,我们采用适当的变量变换w = f (u),并利用变分方法找到了非负解的存在性。我们的解满足上述方程的弱形式,但它们实际上是rn \{0}中的经典解。非线性函数g具有双幂行为,其标准示例为g (t) = min {t1 q1−1,t1 q2−1}(t >),恢复了通常情况下q1 = q2时的单幂行为。
A note on quasilinear Schrödinger equations with singular or vanishing radial potentials
. In this note we complete the study of [3], where we got existence results for the quasilinear elliptic equation N , with singular or vanishing continuous radial potentials V ( r ), K ( r ). In [3] we assumed, for technical reasons, that K ( r ) was vanishing as r → 0, while in the present paper we remove this obstruction. To face the problem we apply a suitable change of variables w = f ( u ) and we find existence of non negative solutions by the application of variational methods. Our solutions satisfy a weak formulations of the above equation, but they are in fact classical solutions in R N \ { 0 } . The nonlinearity g has a double-power behavior, whose standard example is g ( t ) = min { t q 1 − 1 , t q 2 − 1 } ( t > 0), recovering the usual case of a single-power behavior when q 1 = q 2 .
期刊介绍:
Differential and Integral Equations will publish carefully selected research papers on mathematical aspects of differential and integral equations and on applications of the mathematical theory to issues arising in the sciences and in engineering. Papers submitted to this journal should be correct, new, and of interest to a substantial number of mathematicians working in these areas.