无限缓冲区D-MAP/D-MSP/1排队系统的平稳性分析

Q3 Business, Management and Accounting
R. Nandi, S. K. Samanta
{"title":"无限缓冲区D-MAP/D-MSP/1排队系统的平稳性分析","authors":"R. Nandi, S. K. Samanta","doi":"10.1080/01966324.2020.1777913","DOIUrl":null,"url":null,"abstract":"Abstract This paper deals with the analysis of an infinite-buffer single-server D-MAP/D-MSP/1 queueing system. This queueing system can be analyzed by representing level-independent quasi-birth-and-death process in tridiagonal structure. The proposed analysis is based on the use of matrix-geometric method in conjunction with the spectral method to obtain the system-length distribution at outside observer’s epoch. We derive the stationary system-length distributions at random, prearrival, intermediate and post-departure epochs using the system-length distribution at outside observer’s epoch. The waiting-time distribution in the queue measured in slots of an arriving customer is also carried out. Computational procedures along with numerical results are provided to confirm the correctness of our analytical results.","PeriodicalId":35850,"journal":{"name":"American Journal of Mathematical and Management Sciences","volume":"39 1","pages":"362 - 382"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/01966324.2020.1777913","citationCount":"1","resultStr":"{\"title\":\"Stationary Analysis of an Infinite-Buffer D-MAP/D-MSP/1 Queueing System\",\"authors\":\"R. Nandi, S. K. Samanta\",\"doi\":\"10.1080/01966324.2020.1777913\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract This paper deals with the analysis of an infinite-buffer single-server D-MAP/D-MSP/1 queueing system. This queueing system can be analyzed by representing level-independent quasi-birth-and-death process in tridiagonal structure. The proposed analysis is based on the use of matrix-geometric method in conjunction with the spectral method to obtain the system-length distribution at outside observer’s epoch. We derive the stationary system-length distributions at random, prearrival, intermediate and post-departure epochs using the system-length distribution at outside observer’s epoch. The waiting-time distribution in the queue measured in slots of an arriving customer is also carried out. Computational procedures along with numerical results are provided to confirm the correctness of our analytical results.\",\"PeriodicalId\":35850,\"journal\":{\"name\":\"American Journal of Mathematical and Management Sciences\",\"volume\":\"39 1\",\"pages\":\"362 - 382\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-06-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/01966324.2020.1777913\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"American Journal of Mathematical and Management Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/01966324.2020.1777913\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Business, Management and Accounting\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"American Journal of Mathematical and Management Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/01966324.2020.1777913","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Business, Management and Accounting","Score":null,"Total":0}
引用次数: 1

摘要

摘要本文分析了一个无限缓冲区的单服务器D-MAP/D-MSP/1排队系统。该排队系统可以通过在三对角结构中表示水平无关的拟生灭过程来分析。所提出的分析是基于矩阵几何方法和谱方法的结合,以获得观测器历元外的系统长度分布。我们利用观测器外历元的系统长度分布,导出了随机历元、到达前历元、中间历元和出发后历元的平稳系统长度分布。还进行了以到达客户的时隙为单位测量的队列中的等待时间分布。提供了计算程序和数值结果,以证实我们的分析结果的正确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Stationary Analysis of an Infinite-Buffer D-MAP/D-MSP/1 Queueing System
Abstract This paper deals with the analysis of an infinite-buffer single-server D-MAP/D-MSP/1 queueing system. This queueing system can be analyzed by representing level-independent quasi-birth-and-death process in tridiagonal structure. The proposed analysis is based on the use of matrix-geometric method in conjunction with the spectral method to obtain the system-length distribution at outside observer’s epoch. We derive the stationary system-length distributions at random, prearrival, intermediate and post-departure epochs using the system-length distribution at outside observer’s epoch. The waiting-time distribution in the queue measured in slots of an arriving customer is also carried out. Computational procedures along with numerical results are provided to confirm the correctness of our analytical results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
American Journal of Mathematical and Management Sciences
American Journal of Mathematical and Management Sciences Business, Management and Accounting-Business, Management and Accounting (all)
CiteScore
2.70
自引率
0.00%
发文量
5
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信