用不动点定理研究函数方程的渐近稳定性

Muhammad N. Islam, Jeffrey T. Neugebauer
{"title":"用不动点定理研究函数方程的渐近稳定性","authors":"Muhammad N. Islam, Jeffrey T. Neugebauer","doi":"10.12732/caa.v22i4.8","DOIUrl":null,"url":null,"abstract":"For many years, Liapunov’s direct method has been the primary technique for studying various stability also known as ‘Liapunov stability’ of functional differential equations. Recently, it has been noticed that some difficulties can arise when Liapunov’s method is applied to certain equations, and that a suitable fixed point theorem can overcome some of these difficulties. In this paper we study a particular stability which differs from the Liapunov stability. In particular, we study the existence of asymptotically stable solutions of a system of nonlinear Volterra integral equations. We employ a fixed point theorem due to Krasnosel’skii in the analysis. AMS Subject Classification: 47H10 Received: June 13, 2017 ; Accepted: October 31, 2018 ; Published: November 13, 2018. doi: 10.12732/caa.v22i4.8 Dynamic Publishers, Inc., Acad. Publishers, Ltd. http://www.acadsol.eu/caa 612 M.N. ISLAM AND J.T. NEUGEBAUER","PeriodicalId":92887,"journal":{"name":"Communications in applied analysis","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"ASYMPTOTIC STABILITY OF FUNCTIONAL EQUATIONS BY FIXED POINT THEOREMS\",\"authors\":\"Muhammad N. Islam, Jeffrey T. Neugebauer\",\"doi\":\"10.12732/caa.v22i4.8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For many years, Liapunov’s direct method has been the primary technique for studying various stability also known as ‘Liapunov stability’ of functional differential equations. Recently, it has been noticed that some difficulties can arise when Liapunov’s method is applied to certain equations, and that a suitable fixed point theorem can overcome some of these difficulties. In this paper we study a particular stability which differs from the Liapunov stability. In particular, we study the existence of asymptotically stable solutions of a system of nonlinear Volterra integral equations. We employ a fixed point theorem due to Krasnosel’skii in the analysis. AMS Subject Classification: 47H10 Received: June 13, 2017 ; Accepted: October 31, 2018 ; Published: November 13, 2018. doi: 10.12732/caa.v22i4.8 Dynamic Publishers, Inc., Acad. Publishers, Ltd. http://www.acadsol.eu/caa 612 M.N. ISLAM AND J.T. NEUGEBAUER\",\"PeriodicalId\":92887,\"journal\":{\"name\":\"Communications in applied analysis\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-11-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications in applied analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.12732/caa.v22i4.8\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in applied analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12732/caa.v22i4.8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

多年来,李亚普诺夫直接方法一直是研究泛函微分方程各种稳定性的主要技术,也称为“李亚普夫稳定性”。最近,人们注意到当Liapunov方法应用于某些方程时会出现一些困难,并且一个合适的不动点定理可以克服其中的一些困难。本文研究了一个不同于李雅普诺夫稳定性的特殊稳定性。特别地,我们研究了一类非线性Volterra积分方程组渐近稳定解的存在性。我们在分析中使用了克拉斯诺塞尔的不动点定理。AMS受试者分类:47H10接收时间:2017年6月13日;受理时间:2018年10月31日;发布时间:2018年11月13日。doi:10.12732/caa.v22i4.8动态出版商,股份有限公司,Acad。有限公司出版社。http://www.acadsol.eu/caa612 M.N.ISLAM和J.T.NEUGEBAUER
本文章由计算机程序翻译,如有差异,请以英文原文为准。
ASYMPTOTIC STABILITY OF FUNCTIONAL EQUATIONS BY FIXED POINT THEOREMS
For many years, Liapunov’s direct method has been the primary technique for studying various stability also known as ‘Liapunov stability’ of functional differential equations. Recently, it has been noticed that some difficulties can arise when Liapunov’s method is applied to certain equations, and that a suitable fixed point theorem can overcome some of these difficulties. In this paper we study a particular stability which differs from the Liapunov stability. In particular, we study the existence of asymptotically stable solutions of a system of nonlinear Volterra integral equations. We employ a fixed point theorem due to Krasnosel’skii in the analysis. AMS Subject Classification: 47H10 Received: June 13, 2017 ; Accepted: October 31, 2018 ; Published: November 13, 2018. doi: 10.12732/caa.v22i4.8 Dynamic Publishers, Inc., Acad. Publishers, Ltd. http://www.acadsol.eu/caa 612 M.N. ISLAM AND J.T. NEUGEBAUER
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信