L. Rincón, L. Seijas, R. Almeida, F. Javier Torres
{"title":"通过物理信息神经网络构建精确的动能密度泛函及其泛函导数","authors":"L. Rincón, L. Seijas, R. Almeida, F. Javier Torres","doi":"10.1088/2399-6528/acd90e","DOIUrl":null,"url":null,"abstract":"One of the primary obstacles in the development of orbital–free density functional theory is the lack of an accurate functional for the Kohn–Sham non-interacting kinetic energy, which, in addition to its accuracy, must also render a good approximation for its functional derivative. To address this critical issue, we propose the construction of a kinetic energy density functional throught physical- informed neural network, where the neural network’s loss function is designed to simultaneously reproduce the atom’s shell structures, and also, an analytically calculated functional derivative. As a proof-of-concept, we have tested the accuracy of the kinetic energy potential by optimizing electron densities for atoms from Li to Xe.","PeriodicalId":47089,"journal":{"name":"Journal of Physics Communications","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2023-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Towards the construction of an accurate kinetic energy density functional and its functional derivative through physics-informed neural networks\",\"authors\":\"L. Rincón, L. Seijas, R. Almeida, F. Javier Torres\",\"doi\":\"10.1088/2399-6528/acd90e\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"One of the primary obstacles in the development of orbital–free density functional theory is the lack of an accurate functional for the Kohn–Sham non-interacting kinetic energy, which, in addition to its accuracy, must also render a good approximation for its functional derivative. To address this critical issue, we propose the construction of a kinetic energy density functional throught physical- informed neural network, where the neural network’s loss function is designed to simultaneously reproduce the atom’s shell structures, and also, an analytically calculated functional derivative. As a proof-of-concept, we have tested the accuracy of the kinetic energy potential by optimizing electron densities for atoms from Li to Xe.\",\"PeriodicalId\":47089,\"journal\":{\"name\":\"Journal of Physics Communications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2023-05-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Physics Communications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/2399-6528/acd90e\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics Communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/2399-6528/acd90e","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
Towards the construction of an accurate kinetic energy density functional and its functional derivative through physics-informed neural networks
One of the primary obstacles in the development of orbital–free density functional theory is the lack of an accurate functional for the Kohn–Sham non-interacting kinetic energy, which, in addition to its accuracy, must also render a good approximation for its functional derivative. To address this critical issue, we propose the construction of a kinetic energy density functional throught physical- informed neural network, where the neural network’s loss function is designed to simultaneously reproduce the atom’s shell structures, and also, an analytically calculated functional derivative. As a proof-of-concept, we have tested the accuracy of the kinetic energy potential by optimizing electron densities for atoms from Li to Xe.