通过物理信息神经网络构建精确的动能密度泛函及其泛函导数

IF 1.1 Q3 PHYSICS, MULTIDISCIPLINARY
L. Rincón, L. Seijas, R. Almeida, F. Javier Torres
{"title":"通过物理信息神经网络构建精确的动能密度泛函及其泛函导数","authors":"L. Rincón, L. Seijas, R. Almeida, F. Javier Torres","doi":"10.1088/2399-6528/acd90e","DOIUrl":null,"url":null,"abstract":"One of the primary obstacles in the development of orbital–free density functional theory is the lack of an accurate functional for the Kohn–Sham non-interacting kinetic energy, which, in addition to its accuracy, must also render a good approximation for its functional derivative. To address this critical issue, we propose the construction of a kinetic energy density functional throught physical- informed neural network, where the neural network’s loss function is designed to simultaneously reproduce the atom’s shell structures, and also, an analytically calculated functional derivative. As a proof-of-concept, we have tested the accuracy of the kinetic energy potential by optimizing electron densities for atoms from Li to Xe.","PeriodicalId":47089,"journal":{"name":"Journal of Physics Communications","volume":" ","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2023-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Towards the construction of an accurate kinetic energy density functional and its functional derivative through physics-informed neural networks\",\"authors\":\"L. Rincón, L. Seijas, R. Almeida, F. Javier Torres\",\"doi\":\"10.1088/2399-6528/acd90e\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"One of the primary obstacles in the development of orbital–free density functional theory is the lack of an accurate functional for the Kohn–Sham non-interacting kinetic energy, which, in addition to its accuracy, must also render a good approximation for its functional derivative. To address this critical issue, we propose the construction of a kinetic energy density functional throught physical- informed neural network, where the neural network’s loss function is designed to simultaneously reproduce the atom’s shell structures, and also, an analytically calculated functional derivative. As a proof-of-concept, we have tested the accuracy of the kinetic energy potential by optimizing electron densities for atoms from Li to Xe.\",\"PeriodicalId\":47089,\"journal\":{\"name\":\"Journal of Physics Communications\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2023-05-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Physics Communications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/2399-6528/acd90e\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics Communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/2399-6528/acd90e","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1

摘要

轨道-自由密度泛函理论发展的主要障碍之一是缺乏Kohn–Sham非相互作用动能的精确泛函,除了其准确性外,还必须为其泛函导数提供良好的近似。为了解决这个关键问题,我们建议通过物理知情神经网络构建动能密度泛函,其中神经网络的损失函数被设计为同时再现原子的壳层结构,以及分析计算的泛函导数。作为概念的证明,我们通过优化从Li到Xe原子的电子密度来测试动能势的准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Towards the construction of an accurate kinetic energy density functional and its functional derivative through physics-informed neural networks
One of the primary obstacles in the development of orbital–free density functional theory is the lack of an accurate functional for the Kohn–Sham non-interacting kinetic energy, which, in addition to its accuracy, must also render a good approximation for its functional derivative. To address this critical issue, we propose the construction of a kinetic energy density functional throught physical- informed neural network, where the neural network’s loss function is designed to simultaneously reproduce the atom’s shell structures, and also, an analytically calculated functional derivative. As a proof-of-concept, we have tested the accuracy of the kinetic energy potential by optimizing electron densities for atoms from Li to Xe.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Physics Communications
Journal of Physics Communications PHYSICS, MULTIDISCIPLINARY-
CiteScore
2.60
自引率
0.00%
发文量
114
审稿时长
10 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信