基于超声心动图数据的机器学习方法改进对肥厚型心肌病心血管事件的预测

IF 18 Q4 Medicine
M. Dorr (Docteur Junior)
{"title":"基于超声心动图数据的机器学习方法改进对肥厚型心肌病心血管事件的预测","authors":"M. Dorr (Docteur Junior)","doi":"10.1016/j.acvdsp.2023.04.047","DOIUrl":null,"url":null,"abstract":"<div><h3>Introduction</h3><p><span>Structural changes and myocardial fibrosis quantification by </span>cardiac imaging<span> have become increasingly important to predict cardiovascular events in hypertrophic cardiomyopathy patients. In this setting, it is likely that a supervised approach, using machine learning, may improve their risk assessment.</span></p></div><div><h3>Method</h3><p>We retrospectively included patients with confirmed HCM (<em>n</em> <!-->=<!--> <!-->265, 52<!--> <!-->±<!--> <!-->17<!--> <!-->years) through clinical and echocardiographic. A supervised machine learning prognosis algorithm, based on echocardiographic data, was obtained to predict cardiovascular (CV) outcomes, and subsequently investigated for their association with myocardial fibrosis (<em>n</em> <!-->=<!--> <!-->185) assessed by CMR imaging.</p></div><div><h3>Results</h3><p>At follow-up at 57<!--> <span>months, 13 (4.9%) of patients died and 114 (43%) had been hospitalized for CV events. Patient with CV events had higher indexed LV mass, worse diastolic dysfunction, and more severe LV obstruction. HCM-patients with myocardial fibrosis have more severe LV hypertrophy (OR: 3.1; </span><em>P</em> <!-->=<!--> <!-->0.003) and longitudinal myocardial deformation (OR: 0.8; <em>P</em> <!-->=<!--> <span>0.008). Prognosis algorithm established using machine learning identified left atrium area (&gt;</span> <!-->24<!--> <!-->cm<sup>2</sup>), mechanical dispersion (&gt;<!--> <!-->49<!--> <!-->ms), posterior wall thickness (&gt;<!--> <!-->1.8<!--> <!-->cm), and TAPSE (27<!--> <!-->mm) as the four most relevant variables to correctly predict cardiovascular events.</p></div><div><h3>Conclusion</h3><p><span>Our findings suggest that a simple algorithm based on four key variables (posterior wall thickness, mechanical dispersion, LA area and TAPSE) may help risk stratification<span> and decision-making in patients<span> with HCM. Using new treatments to target these parameters might improve outcomes in HCM-patients (</span></span></span><span>Fig. 1</span>).</p></div>","PeriodicalId":8140,"journal":{"name":"Archives of Cardiovascular Diseases Supplements","volume":"15 3","pages":"Page 266"},"PeriodicalIF":18.0000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Machine learning approach based on echocardiographic data to improve prediction of cardiovascular events in hypertrophic cardiomyopathy\",\"authors\":\"M. Dorr (Docteur Junior)\",\"doi\":\"10.1016/j.acvdsp.2023.04.047\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Introduction</h3><p><span>Structural changes and myocardial fibrosis quantification by </span>cardiac imaging<span> have become increasingly important to predict cardiovascular events in hypertrophic cardiomyopathy patients. In this setting, it is likely that a supervised approach, using machine learning, may improve their risk assessment.</span></p></div><div><h3>Method</h3><p>We retrospectively included patients with confirmed HCM (<em>n</em> <!-->=<!--> <!-->265, 52<!--> <!-->±<!--> <!-->17<!--> <!-->years) through clinical and echocardiographic. A supervised machine learning prognosis algorithm, based on echocardiographic data, was obtained to predict cardiovascular (CV) outcomes, and subsequently investigated for their association with myocardial fibrosis (<em>n</em> <!-->=<!--> <!-->185) assessed by CMR imaging.</p></div><div><h3>Results</h3><p>At follow-up at 57<!--> <span>months, 13 (4.9%) of patients died and 114 (43%) had been hospitalized for CV events. Patient with CV events had higher indexed LV mass, worse diastolic dysfunction, and more severe LV obstruction. HCM-patients with myocardial fibrosis have more severe LV hypertrophy (OR: 3.1; </span><em>P</em> <!-->=<!--> <!-->0.003) and longitudinal myocardial deformation (OR: 0.8; <em>P</em> <!-->=<!--> <span>0.008). Prognosis algorithm established using machine learning identified left atrium area (&gt;</span> <!-->24<!--> <!-->cm<sup>2</sup>), mechanical dispersion (&gt;<!--> <!-->49<!--> <!-->ms), posterior wall thickness (&gt;<!--> <!-->1.8<!--> <!-->cm), and TAPSE (27<!--> <!-->mm) as the four most relevant variables to correctly predict cardiovascular events.</p></div><div><h3>Conclusion</h3><p><span>Our findings suggest that a simple algorithm based on four key variables (posterior wall thickness, mechanical dispersion, LA area and TAPSE) may help risk stratification<span> and decision-making in patients<span> with HCM. Using new treatments to target these parameters might improve outcomes in HCM-patients (</span></span></span><span>Fig. 1</span>).</p></div>\",\"PeriodicalId\":8140,\"journal\":{\"name\":\"Archives of Cardiovascular Diseases Supplements\",\"volume\":\"15 3\",\"pages\":\"Page 266\"},\"PeriodicalIF\":18.0000,\"publicationDate\":\"2023-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Archives of Cardiovascular Diseases Supplements\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1878648023001866\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archives of Cardiovascular Diseases Supplements","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1878648023001866","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0

摘要

在肥厚性心肌病患者中,结构变化和心肌纤维化量化在预测心血管事件方面变得越来越重要。在这种情况下,使用机器学习的监督方法可能会改善他们的风险评估。方法回顾性分析经临床及超声心动图证实的HCM患者265例(52±17岁)。基于超声心动图数据,获得了一种有监督的机器学习预测算法来预测心血管(CV)结果,并随后研究了它们与CMR成像评估的心肌纤维化(n = 185)的关联。结果随访57个月时,13例(4.9%)患者死亡,114例(43%)患者因心血管事件住院。有CV事件的患者左室质量指数更高,舒张功能障碍更严重,左室梗阻更严重。hcm合并心肌纤维化患者左室肥厚更严重(OR: 3.1;P = 0.003)和纵向心肌变形(OR: 0.8;p = 0.008)。利用机器学习建立的预测算法识别左心房面积(>24 cm2),机械分散(>49 ms),后壁厚度(>1.8 cm)和TAPSE (27 mm)是正确预测心血管事件的四个最相关的变量。结论基于四个关键变量(后壁厚度、机械弥散度、LA面积和TAPSE)的简单算法可能有助于HCM患者的风险分层和决策。使用针对这些参数的新疗法可能会改善hcm患者的预后(图1)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Machine learning approach based on echocardiographic data to improve prediction of cardiovascular events in hypertrophic cardiomyopathy

Introduction

Structural changes and myocardial fibrosis quantification by cardiac imaging have become increasingly important to predict cardiovascular events in hypertrophic cardiomyopathy patients. In this setting, it is likely that a supervised approach, using machine learning, may improve their risk assessment.

Method

We retrospectively included patients with confirmed HCM (n = 265, 52 ± 17 years) through clinical and echocardiographic. A supervised machine learning prognosis algorithm, based on echocardiographic data, was obtained to predict cardiovascular (CV) outcomes, and subsequently investigated for their association with myocardial fibrosis (n = 185) assessed by CMR imaging.

Results

At follow-up at 57 months, 13 (4.9%) of patients died and 114 (43%) had been hospitalized for CV events. Patient with CV events had higher indexed LV mass, worse diastolic dysfunction, and more severe LV obstruction. HCM-patients with myocardial fibrosis have more severe LV hypertrophy (OR: 3.1; P = 0.003) and longitudinal myocardial deformation (OR: 0.8; P = 0.008). Prognosis algorithm established using machine learning identified left atrium area (> 24 cm2), mechanical dispersion (> 49 ms), posterior wall thickness (> 1.8 cm), and TAPSE (27 mm) as the four most relevant variables to correctly predict cardiovascular events.

Conclusion

Our findings suggest that a simple algorithm based on four key variables (posterior wall thickness, mechanical dispersion, LA area and TAPSE) may help risk stratification and decision-making in patients with HCM. Using new treatments to target these parameters might improve outcomes in HCM-patients (Fig. 1).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Archives of Cardiovascular Diseases Supplements
Archives of Cardiovascular Diseases Supplements CARDIAC & CARDIOVASCULAR SYSTEMS-
自引率
0.00%
发文量
508
期刊介绍: Archives of Cardiovascular Diseases Supplements is the official journal of the French Society of Cardiology. The journal publishes original peer-reviewed clinical and research articles, epidemiological studies, new methodological clinical approaches, review articles, editorials, and Images in cardiovascular medicine. The topics covered include coronary artery and valve diseases, interventional and pediatric cardiology, cardiovascular surgery, cardiomyopathy and heart failure, arrhythmias and stimulation, cardiovascular imaging, vascular medicine and hypertension, epidemiology and risk factors, and large multicenter studies. Additionally, Archives of Cardiovascular Diseases also publishes abstracts of papers presented at the annual sessions of the Journées Européennes de la Société Française de Cardiologie and the guidelines edited by the French Society of Cardiology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信