{"title":"OWL中的挖掘基数限制","authors":"Jedrzej Potoniec","doi":"10.2478/fcds-2020-0011","DOIUrl":null,"url":null,"abstract":"\n We present an approach to mine cardinality restriction axioms from an existing knowledge graph, in order to extend an ontology describing the graph. We compare frequency estimation with kernel density estimation as approaches to obtain the cardinalities in restrictions. We also propose numerous strategies for filtering obtained axioms in order to make them more available for the ontology engineer. We report the results of experimental evaluation on DBpedia 2016-10 and show that using kernel density estimation to compute the cardinalities in cardinality restrictions yields more robust results that using frequency estimation. We also show that while filtering is of limited usability for minimum cardinality restrictions, it is much more important for maximum cardinality restrictions. The presented findings can be used to extend existing ontology engineering tools in order to support ontology construction and enable more efficient creation of knowledge-intensive artificial intelligence systems.","PeriodicalId":42909,"journal":{"name":"Foundations of Computing and Decision Sciences","volume":" ","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2020-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Mining Cardinality Restrictions in OWL\",\"authors\":\"Jedrzej Potoniec\",\"doi\":\"10.2478/fcds-2020-0011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n We present an approach to mine cardinality restriction axioms from an existing knowledge graph, in order to extend an ontology describing the graph. We compare frequency estimation with kernel density estimation as approaches to obtain the cardinalities in restrictions. We also propose numerous strategies for filtering obtained axioms in order to make them more available for the ontology engineer. We report the results of experimental evaluation on DBpedia 2016-10 and show that using kernel density estimation to compute the cardinalities in cardinality restrictions yields more robust results that using frequency estimation. We also show that while filtering is of limited usability for minimum cardinality restrictions, it is much more important for maximum cardinality restrictions. The presented findings can be used to extend existing ontology engineering tools in order to support ontology construction and enable more efficient creation of knowledge-intensive artificial intelligence systems.\",\"PeriodicalId\":42909,\"journal\":{\"name\":\"Foundations of Computing and Decision Sciences\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2020-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Foundations of Computing and Decision Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/fcds-2020-0011\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Foundations of Computing and Decision Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/fcds-2020-0011","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
We present an approach to mine cardinality restriction axioms from an existing knowledge graph, in order to extend an ontology describing the graph. We compare frequency estimation with kernel density estimation as approaches to obtain the cardinalities in restrictions. We also propose numerous strategies for filtering obtained axioms in order to make them more available for the ontology engineer. We report the results of experimental evaluation on DBpedia 2016-10 and show that using kernel density estimation to compute the cardinalities in cardinality restrictions yields more robust results that using frequency estimation. We also show that while filtering is of limited usability for minimum cardinality restrictions, it is much more important for maximum cardinality restrictions. The presented findings can be used to extend existing ontology engineering tools in order to support ontology construction and enable more efficient creation of knowledge-intensive artificial intelligence systems.