定性数据复用与大社会研究的数据固化意义

Sara Mannheimer
{"title":"定性数据复用与大社会研究的数据固化意义","authors":"Sara Mannheimer","doi":"10.7191/jeslib.2021.1218","DOIUrl":null,"url":null,"abstract":"Objective: Big social data (such as social media and blogs) and archived qualitative data (such as interview transcripts, field notebooks, and diaries) are similar, but their respective communities of practice are under-connected. This paper explores shared challenges in qualitative data reuse and big social research and identifies implications for data curation.\n\nMethods: This paper uses a broad literature search and inductive coding of 300 articles relating to qualitative data reuse and big social research. The literature review produces six key challenges relating to data use and reuse that are present in both qualitative data reuse and big social research—context, data quality, data comparability, informed consent, privacy & confidentiality, and intellectual property & data ownership.\n\nResults: This paper explores six key challenges related to data use and reuse for qualitative data and big social research and discusses their implications for data curation practices.\n\nConclusions: Data curators can benefit from understanding these six key challenges and examining data curation implications. Data curation implications from these challenges include strategies for: providing clear documentation; linking and combining datasets; supporting trustworthy repositories; using and advocating for metadata standards; discussing alternative consent strategies with researchers and IRBs; understanding and supporting deidentification challenges; supporting restricted access for data; creating data use agreements; supporting rights management and data licensing; developing and supporting alternative archiving strategies. Considering these data curation implications will help data curators support sounder practices for both qualitative data reuse and big social research.","PeriodicalId":90214,"journal":{"name":"Journal of escience librarianship","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Data Curation Implications of Qualitative Data Reuse and Big Social Research\",\"authors\":\"Sara Mannheimer\",\"doi\":\"10.7191/jeslib.2021.1218\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Objective: Big social data (such as social media and blogs) and archived qualitative data (such as interview transcripts, field notebooks, and diaries) are similar, but their respective communities of practice are under-connected. This paper explores shared challenges in qualitative data reuse and big social research and identifies implications for data curation.\\n\\nMethods: This paper uses a broad literature search and inductive coding of 300 articles relating to qualitative data reuse and big social research. The literature review produces six key challenges relating to data use and reuse that are present in both qualitative data reuse and big social research—context, data quality, data comparability, informed consent, privacy & confidentiality, and intellectual property & data ownership.\\n\\nResults: This paper explores six key challenges related to data use and reuse for qualitative data and big social research and discusses their implications for data curation practices.\\n\\nConclusions: Data curators can benefit from understanding these six key challenges and examining data curation implications. Data curation implications from these challenges include strategies for: providing clear documentation; linking and combining datasets; supporting trustworthy repositories; using and advocating for metadata standards; discussing alternative consent strategies with researchers and IRBs; understanding and supporting deidentification challenges; supporting restricted access for data; creating data use agreements; supporting rights management and data licensing; developing and supporting alternative archiving strategies. Considering these data curation implications will help data curators support sounder practices for both qualitative data reuse and big social research.\",\"PeriodicalId\":90214,\"journal\":{\"name\":\"Journal of escience librarianship\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of escience librarianship\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.7191/jeslib.2021.1218\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of escience librarianship","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7191/jeslib.2021.1218","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

目标:大社交数据(如社交媒体和博客)和存档的定性数据(如采访记录、实地笔记和日记)相似,但它们各自的实践社区联系不足。本文探讨了定性数据重用和大型社会研究中的共同挑战,并确定了数据管理的含义。方法:本文采用广泛的文献检索和归纳编码的方法,对300篇涉及定性数据重用和大型社会研究的文章进行归纳编码。文献综述提出了与数据使用和重用相关的六个关键挑战,这些挑战存在于定性数据重用和大型社会研究中——背景、数据质量、数据可比性、知情同意、隐私和保密以及知识产权和数据所有权。结果:本文探讨了与定性数据和大社会研究的数据使用和重用相关的六个关键挑战,并讨论了它们对数据管理实践的影响。结论:数据管理者可以从理解这六个关键挑战和研究数据管理的含义中受益。这些挑战对数据管理的影响包括以下战略:提供明确的文件;链接和组合数据集;支持值得信赖的存储库;使用和倡导元数据标准;与研究人员和IRB讨论替代同意策略;理解并支持去身份识别挑战;支持对数据的受限访问;创建数据使用协议;支持权限管理和数据许可;制定和支持替代归档策略。考虑到这些数据管理的影响,将有助于数据管理者支持定性数据重用和大型社会研究的更合理实践。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Data Curation Implications of Qualitative Data Reuse and Big Social Research
Objective: Big social data (such as social media and blogs) and archived qualitative data (such as interview transcripts, field notebooks, and diaries) are similar, but their respective communities of practice are under-connected. This paper explores shared challenges in qualitative data reuse and big social research and identifies implications for data curation. Methods: This paper uses a broad literature search and inductive coding of 300 articles relating to qualitative data reuse and big social research. The literature review produces six key challenges relating to data use and reuse that are present in both qualitative data reuse and big social research—context, data quality, data comparability, informed consent, privacy & confidentiality, and intellectual property & data ownership. Results: This paper explores six key challenges related to data use and reuse for qualitative data and big social research and discusses their implications for data curation practices. Conclusions: Data curators can benefit from understanding these six key challenges and examining data curation implications. Data curation implications from these challenges include strategies for: providing clear documentation; linking and combining datasets; supporting trustworthy repositories; using and advocating for metadata standards; discussing alternative consent strategies with researchers and IRBs; understanding and supporting deidentification challenges; supporting restricted access for data; creating data use agreements; supporting rights management and data licensing; developing and supporting alternative archiving strategies. Considering these data curation implications will help data curators support sounder practices for both qualitative data reuse and big social research.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
审稿时长
16 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信