P. Nasta, D. Todini-Zicavo, G. Zuecco, C. Marchina, D. Penna, J. McDonnell, Anam Amin, C. Allocca, F. Marzaioli, L. Stellato, M. Borga, N. Romano
{"title":"量化橄榄树的灌溉吸收:一种结合同位素示踪和Hydrus-1D的概念验证方法","authors":"P. Nasta, D. Todini-Zicavo, G. Zuecco, C. Marchina, D. Penna, J. McDonnell, Anam Amin, C. Allocca, F. Marzaioli, L. Stellato, M. Borga, N. Romano","doi":"10.1080/02626667.2023.2218552","DOIUrl":null,"url":null,"abstract":"ABSTRACT An isotope-enabled module of Hydrus-1D was applied to a potted olive tree to trace water parcels originating from 26 irrigation events in a glasshouse experiment. The soil hydraulic parameters were optimized via inverse modelling by minimizing the discrepancies between observed and simulated soil water content and soil water isotope (18O) values at three soil depths. The model’s performance was validated with observed sap flow z-scores and xylem water 18O. We quantified the source and transit time of irrigation water by analysing the mass breakthrough curves derived from a virtual tracer injection experiment. On average, 26% of irrigation water was removed by plant transpiration with a mean transit time of 94 hours. Our proof of concept work suggests that transit time may represent a functional indicator for the uptake of irrigation water in agricultural ecosystems.","PeriodicalId":55042,"journal":{"name":"Hydrological Sciences Journal-Journal Des Sciences Hydrologiques","volume":"68 1","pages":"1479 - 1486"},"PeriodicalIF":2.8000,"publicationDate":"2023-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Quantifying irrigation uptake in olive trees: a proof-of-concept approach combining isotope tracing and Hydrus-1D\",\"authors\":\"P. Nasta, D. Todini-Zicavo, G. Zuecco, C. Marchina, D. Penna, J. McDonnell, Anam Amin, C. Allocca, F. Marzaioli, L. Stellato, M. Borga, N. Romano\",\"doi\":\"10.1080/02626667.2023.2218552\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT An isotope-enabled module of Hydrus-1D was applied to a potted olive tree to trace water parcels originating from 26 irrigation events in a glasshouse experiment. The soil hydraulic parameters were optimized via inverse modelling by minimizing the discrepancies between observed and simulated soil water content and soil water isotope (18O) values at three soil depths. The model’s performance was validated with observed sap flow z-scores and xylem water 18O. We quantified the source and transit time of irrigation water by analysing the mass breakthrough curves derived from a virtual tracer injection experiment. On average, 26% of irrigation water was removed by plant transpiration with a mean transit time of 94 hours. Our proof of concept work suggests that transit time may represent a functional indicator for the uptake of irrigation water in agricultural ecosystems.\",\"PeriodicalId\":55042,\"journal\":{\"name\":\"Hydrological Sciences Journal-Journal Des Sciences Hydrologiques\",\"volume\":\"68 1\",\"pages\":\"1479 - 1486\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2023-06-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Hydrological Sciences Journal-Journal Des Sciences Hydrologiques\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1080/02626667.2023.2218552\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"WATER RESOURCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Hydrological Sciences Journal-Journal Des Sciences Hydrologiques","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1080/02626667.2023.2218552","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"WATER RESOURCES","Score":null,"Total":0}
Quantifying irrigation uptake in olive trees: a proof-of-concept approach combining isotope tracing and Hydrus-1D
ABSTRACT An isotope-enabled module of Hydrus-1D was applied to a potted olive tree to trace water parcels originating from 26 irrigation events in a glasshouse experiment. The soil hydraulic parameters were optimized via inverse modelling by minimizing the discrepancies between observed and simulated soil water content and soil water isotope (18O) values at three soil depths. The model’s performance was validated with observed sap flow z-scores and xylem water 18O. We quantified the source and transit time of irrigation water by analysing the mass breakthrough curves derived from a virtual tracer injection experiment. On average, 26% of irrigation water was removed by plant transpiration with a mean transit time of 94 hours. Our proof of concept work suggests that transit time may represent a functional indicator for the uptake of irrigation water in agricultural ecosystems.
期刊介绍:
Hydrological Sciences Journal is an international journal focused on hydrology and the relationship of water to atmospheric processes and climate.
Hydrological Sciences Journal is the official journal of the International Association of Hydrological Sciences (IAHS).
Hydrological Sciences Journal aims to provide a forum for original papers and for the exchange of information and views on significant developments in hydrology worldwide on subjects including:
Hydrological cycle and processes
Surface water
Groundwater
Water resource systems and management
Geographical factors
Earth and atmospheric processes
Hydrological extremes and their impact
Hydrological Sciences Journal offers a variety of formats for paper submission, including original articles, scientific notes, discussions, and rapid communications.