一种新的高斯Fibonacci矩阵及其应用

Q4 Mathematics
B. Prasad
{"title":"一种新的高斯Fibonacci矩阵及其应用","authors":"B. Prasad","doi":"10.22124/JART.2019.12999.1144","DOIUrl":null,"url":null,"abstract":"In this paper, we introduced a new Gaussian Fibonacci matrix, $G^{n}$ whose elements are Gaussian Fibonacci numbers and we developed a new coding and decoding method followed from this Gaussian Fibonacci matrix, $G^{n}$. We established the relations between the code matrix elements, error detection and correction for this coding theory. Correction ability of this method is $93.33$%.","PeriodicalId":52302,"journal":{"name":"Journal of Algebra and Related Topics","volume":"7 1","pages":"65-72"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"A new Gaussian Fibonacci matrices and its applications\",\"authors\":\"B. Prasad\",\"doi\":\"10.22124/JART.2019.12999.1144\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we introduced a new Gaussian Fibonacci matrix, $G^{n}$ whose elements are Gaussian Fibonacci numbers and we developed a new coding and decoding method followed from this Gaussian Fibonacci matrix, $G^{n}$. We established the relations between the code matrix elements, error detection and correction for this coding theory. Correction ability of this method is $93.33$%.\",\"PeriodicalId\":52302,\"journal\":{\"name\":\"Journal of Algebra and Related Topics\",\"volume\":\"7 1\",\"pages\":\"65-72\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Algebra and Related Topics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22124/JART.2019.12999.1144\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Algebra and Related Topics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22124/JART.2019.12999.1144","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 3

摘要

在本文中,我们引入了一个新的高斯斐波那契矩阵$G^{n}$,其元素是高斯斐波纳契数,并在此基础上发展了一种新的编码和解码方法$G^{n}$。针对该编码理论,建立了编码矩阵元素、检错与纠错之间的关系。该方法的校正能力为$93.33$%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A new Gaussian Fibonacci matrices and its applications
In this paper, we introduced a new Gaussian Fibonacci matrix, $G^{n}$ whose elements are Gaussian Fibonacci numbers and we developed a new coding and decoding method followed from this Gaussian Fibonacci matrix, $G^{n}$. We established the relations between the code matrix elements, error detection and correction for this coding theory. Correction ability of this method is $93.33$%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Algebra and Related Topics
Journal of Algebra and Related Topics Mathematics-Discrete Mathematics and Combinatorics
CiteScore
0.60
自引率
0.00%
发文量
0
审稿时长
16 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信