Covidneneneea 19疫苗订单分配:一个具有替代的优化模型

IF 3.2 Q2 MANAGEMENT
Ilkan Sarigol, R. Ozdemir, E. Bayraktar
{"title":"Covidneneneea 19疫苗订单分配:一个具有替代的优化模型","authors":"Ilkan Sarigol, R. Ozdemir, E. Bayraktar","doi":"10.1108/jhlscm-09-2021-0094","DOIUrl":null,"url":null,"abstract":"PurposeThis paper focuses on multi-objective order allocation with product substitution for the vaccine supply chain under uncertainty.Design/methodology/approachThe weighted-sum minimization approach is used to find a compromised solution between three objectives of minimizing inefficiently vaccinated people, postponed vaccinations, and purchasing costs. A mixed-integer formulation with substitution quantities is proposed, subject to capacity and demand constraints. The substitution ratios between vaccines are assumed to be exogenous. Besides, uncertainty in supplier reliability is formulated using optimistic, most likely, and pessimistic scenarios in the proposed optimization model.FindingsCovid-19 vaccine supply chain process is studied for one government and three vaccine suppliers as an illustrative example. The results provide essential insights for the governments to have proper vaccine allocation and support governments to manage the Covid-19 pandemic.Originality/valueThis paper considers the minimization of postponement in vaccination plans and inefficient vaccination and purchasing costs for order allocation among different vaccine types. To the best of the authors’ knowledge, there is no study in the literature on order allocation of vaccine types with substitution. The analytical hierarchy process structure of the Covid-19 pandemic also contributes to the literature.","PeriodicalId":46575,"journal":{"name":"Journal of Humanitarian Logistics and Supply Chain Management","volume":null,"pages":null},"PeriodicalIF":3.2000,"publicationDate":"2022-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Covid 19 vaccine order allocation: an optimization model with substitution\",\"authors\":\"Ilkan Sarigol, R. Ozdemir, E. Bayraktar\",\"doi\":\"10.1108/jhlscm-09-2021-0094\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"PurposeThis paper focuses on multi-objective order allocation with product substitution for the vaccine supply chain under uncertainty.Design/methodology/approachThe weighted-sum minimization approach is used to find a compromised solution between three objectives of minimizing inefficiently vaccinated people, postponed vaccinations, and purchasing costs. A mixed-integer formulation with substitution quantities is proposed, subject to capacity and demand constraints. The substitution ratios between vaccines are assumed to be exogenous. Besides, uncertainty in supplier reliability is formulated using optimistic, most likely, and pessimistic scenarios in the proposed optimization model.FindingsCovid-19 vaccine supply chain process is studied for one government and three vaccine suppliers as an illustrative example. The results provide essential insights for the governments to have proper vaccine allocation and support governments to manage the Covid-19 pandemic.Originality/valueThis paper considers the minimization of postponement in vaccination plans and inefficient vaccination and purchasing costs for order allocation among different vaccine types. To the best of the authors’ knowledge, there is no study in the literature on order allocation of vaccine types with substitution. The analytical hierarchy process structure of the Covid-19 pandemic also contributes to the literature.\",\"PeriodicalId\":46575,\"journal\":{\"name\":\"Journal of Humanitarian Logistics and Supply Chain Management\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2022-07-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Humanitarian Logistics and Supply Chain Management\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1108/jhlscm-09-2021-0094\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MANAGEMENT\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Humanitarian Logistics and Supply Chain Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1108/jhlscm-09-2021-0094","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MANAGEMENT","Score":null,"Total":0}
引用次数: 2

摘要

目的研究不确定条件下疫苗供应链中具有产品替代的多目标订单分配问题。设计/方法/方法加权和最小化方法用于在三个目标之间找到折衷的解决方案,即最大限度地减少低效接种者、推迟接种疫苗和购买成本。在容量和需求约束下,提出了一种具有替代量的混合整数公式。疫苗之间的替代率被认为是外源性的。此外,在所提出的优化模型中,供应商可靠性的不确定性是使用乐观、最可能和悲观的场景来制定的。以一个政府和三家疫苗供应商为例,研究了FindingsCovid-19疫苗供应链流程。研究结果为各国政府提供了必要的见解,以获得适当的疫苗分配,并支持各国政府管理新冠肺炎大流行。原创性/价值本文考虑了疫苗接种计划的延迟以及不同疫苗类型之间订单分配的低效疫苗接种和采购成本的最小化。据作者所知,文献中没有关于替代疫苗类型的顺序分配的研究。新冠肺炎大流行的分析层次过程结构也有助于文献。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Covid 19 vaccine order allocation: an optimization model with substitution
PurposeThis paper focuses on multi-objective order allocation with product substitution for the vaccine supply chain under uncertainty.Design/methodology/approachThe weighted-sum minimization approach is used to find a compromised solution between three objectives of minimizing inefficiently vaccinated people, postponed vaccinations, and purchasing costs. A mixed-integer formulation with substitution quantities is proposed, subject to capacity and demand constraints. The substitution ratios between vaccines are assumed to be exogenous. Besides, uncertainty in supplier reliability is formulated using optimistic, most likely, and pessimistic scenarios in the proposed optimization model.FindingsCovid-19 vaccine supply chain process is studied for one government and three vaccine suppliers as an illustrative example. The results provide essential insights for the governments to have proper vaccine allocation and support governments to manage the Covid-19 pandemic.Originality/valueThis paper considers the minimization of postponement in vaccination plans and inefficient vaccination and purchasing costs for order allocation among different vaccine types. To the best of the authors’ knowledge, there is no study in the literature on order allocation of vaccine types with substitution. The analytical hierarchy process structure of the Covid-19 pandemic also contributes to the literature.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.40
自引率
20.00%
发文量
20
期刊介绍: The Journal of Humanitarian Logistics and Supply Chain Management (JHLSCM) is targeted at academics and practitioners in humanitarian public and private sector organizations working on all aspects of humanitarian logistics and supply chain management. The journal promotes the exchange of knowledge, experience and new ideas between researchers and practitioners and encourages a multi-disciplinary and cross-functional approach to the resolution of problems and exploitations of opportunities within humanitarian supply chains. Contributions are encouraged from diverse disciplines (logistics, operations management, process engineering, health care, geography, management science, information technology, ethics, corporate social responsibility, disaster management, development aid, public policy) but need to have a logistics and/or supply chain focus. JHLSCM publishes state of the art research, utilizing both quantitative and qualitative approaches, in the field of humanitarian and development aid logistics and supply chain management.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信