A. Eslami, G. Borghini, A. Montanini, G. Grieco, C. Marchesi
{"title":"伊朗南部切什梅赫-蛇绿地块岩石圈地幔辉石岩脉成因的岩石学约束","authors":"A. Eslami, G. Borghini, A. Montanini, G. Grieco, C. Marchesi","doi":"10.4454/OFIOLITI.V46I1.538","DOIUrl":null,"url":null,"abstract":"The Cheshmeh-Bid ophiolitic massif in the Khajeh-Jamali district (Southern Iran) is dominated by harzburgite-dunite tectonites locally intruded by orthopyroxenite dikes. These latter are composed of dominant coarse orthopyroxene with minor olivine, Cr-spinel, clinopyroxene and amphibole. Estimated equilibrium temperatures for Mg-hornblende and edenitic amphibole reveal a late stage magmatic origin. The Cheshmeh-Bid orthopyroxenites are characterized by very low Al2O3, CaO, Na2O and TiO2 abundances coupled to relatively high MgO and SiO2 contents. They display U-shaped REE patterns, selective LILE enrichment and positive Pb and Sr anomalies. The host harzburgites are highly refractory mantle residues resulting from fluid-assisted melting. Field observations and mineral assemblages suggest that the pyroxenites formed by melt injection along fractures within rather cold ambient harzburgites and chromitites at moderate pressure (P > 1 GPa). Based on bulk-rock compositions and mineral chemistry, we infer that the Cheshmeh-Bid orthopyroxenites originated from the intrusion and crystallization of hydrous Si-rich, low-Ca melts with a boninite signature in a suprasubduction environment. Fine-grained neoblastic domains developed in the pyroxenites in response to subsolidus ductile deformation and recrystallization, which were most likely related to the exhumation of the Cheshmeh-Bid ophiolite massif.","PeriodicalId":54690,"journal":{"name":"Ofioliti","volume":"46 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2021-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"PETROLOGICAL CONSTRAINTS ON THE ORIGIN OF PYROXENITE DYKES IN THE LITHOSPHERIC MANTLE OF THE CHESHMEH-BID OPHIOLITIC MASSIF, SOUTHERN IRAN\",\"authors\":\"A. Eslami, G. Borghini, A. Montanini, G. Grieco, C. Marchesi\",\"doi\":\"10.4454/OFIOLITI.V46I1.538\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Cheshmeh-Bid ophiolitic massif in the Khajeh-Jamali district (Southern Iran) is dominated by harzburgite-dunite tectonites locally intruded by orthopyroxenite dikes. These latter are composed of dominant coarse orthopyroxene with minor olivine, Cr-spinel, clinopyroxene and amphibole. Estimated equilibrium temperatures for Mg-hornblende and edenitic amphibole reveal a late stage magmatic origin. The Cheshmeh-Bid orthopyroxenites are characterized by very low Al2O3, CaO, Na2O and TiO2 abundances coupled to relatively high MgO and SiO2 contents. They display U-shaped REE patterns, selective LILE enrichment and positive Pb and Sr anomalies. The host harzburgites are highly refractory mantle residues resulting from fluid-assisted melting. Field observations and mineral assemblages suggest that the pyroxenites formed by melt injection along fractures within rather cold ambient harzburgites and chromitites at moderate pressure (P > 1 GPa). Based on bulk-rock compositions and mineral chemistry, we infer that the Cheshmeh-Bid orthopyroxenites originated from the intrusion and crystallization of hydrous Si-rich, low-Ca melts with a boninite signature in a suprasubduction environment. Fine-grained neoblastic domains developed in the pyroxenites in response to subsolidus ductile deformation and recrystallization, which were most likely related to the exhumation of the Cheshmeh-Bid ophiolite massif.\",\"PeriodicalId\":54690,\"journal\":{\"name\":\"Ofioliti\",\"volume\":\"46 1\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2021-01-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ofioliti\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.4454/OFIOLITI.V46I1.538\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GEOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ofioliti","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.4454/OFIOLITI.V46I1.538","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOLOGY","Score":null,"Total":0}
PETROLOGICAL CONSTRAINTS ON THE ORIGIN OF PYROXENITE DYKES IN THE LITHOSPHERIC MANTLE OF THE CHESHMEH-BID OPHIOLITIC MASSIF, SOUTHERN IRAN
The Cheshmeh-Bid ophiolitic massif in the Khajeh-Jamali district (Southern Iran) is dominated by harzburgite-dunite tectonites locally intruded by orthopyroxenite dikes. These latter are composed of dominant coarse orthopyroxene with minor olivine, Cr-spinel, clinopyroxene and amphibole. Estimated equilibrium temperatures for Mg-hornblende and edenitic amphibole reveal a late stage magmatic origin. The Cheshmeh-Bid orthopyroxenites are characterized by very low Al2O3, CaO, Na2O and TiO2 abundances coupled to relatively high MgO and SiO2 contents. They display U-shaped REE patterns, selective LILE enrichment and positive Pb and Sr anomalies. The host harzburgites are highly refractory mantle residues resulting from fluid-assisted melting. Field observations and mineral assemblages suggest that the pyroxenites formed by melt injection along fractures within rather cold ambient harzburgites and chromitites at moderate pressure (P > 1 GPa). Based on bulk-rock compositions and mineral chemistry, we infer that the Cheshmeh-Bid orthopyroxenites originated from the intrusion and crystallization of hydrous Si-rich, low-Ca melts with a boninite signature in a suprasubduction environment. Fine-grained neoblastic domains developed in the pyroxenites in response to subsolidus ductile deformation and recrystallization, which were most likely related to the exhumation of the Cheshmeh-Bid ophiolite massif.
期刊介绍:
Since 1976, Ofioliti provides an international forum for original contributions and reviews in the field of the geodynamics, petrology, geochemistry, biostratigraphy, stratigraphy, tectonics and paleogeography applied to ophiolitic terrains and modern oceanic lithosphere, including their sedimentary cover. Studies of topics such as geodynamics of the mantle, the evolution of orogens including ophiolites and paleoceanography are also welcome