Intekhab Alam, Murshid Kamal, Mohammad Tariq Intezar, Saqib Showkat Wani, Imran Alam
{"title":"广义逆Lindley分布的自适应型渐进式混合滤波统计分析","authors":"Intekhab Alam, Murshid Kamal, Mohammad Tariq Intezar, Saqib Showkat Wani, Imran Alam","doi":"10.1007/s40745-022-00453-1","DOIUrl":null,"url":null,"abstract":"<div><p>The key assumption in accelerated life testing is that the mathematical model concerning the lifetime of the item and the stress is known or can be assumed. In several situations, such life-stress relationships are not known and cannot be assumed, i.e. accelerated life testing information cannot be extrapolated to use situation. So, in such cases, a partially accelerated life test is a more appropriate testing method to be executed for which tested objects are subjected to both normal and accelerated circumstances. Due to continual improvement in manufacturing design, it is more difficult to obtain information about the lifetime of products or materials with high reliability at the time of testing under normal conditions. An approach to accelerate failures is the step-stress partially accelerated life test which increases the load applied to the goods in a particular discrete sequence. In this study, the maximum likelihood estimators of inverse the generalized inverse Lindley distribution parameters and the acceleration factor are investigated in a step-stress partially accelerated life test model utilizing two various types of progressively hybrid censoring systems. Furthermore, the performance of the model parameter estimators with the two progressive hybrid censoring schemes is analyzed and compared in terms of biases and mean squared errors using a Monte Carlo simulation approach.</p></div>","PeriodicalId":36280,"journal":{"name":"Annals of Data Science","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Statistical Analysis from the Generalized Inverse Lindley Distribution with Adaptive Type-II Progressively Hybrid Censoring Scheme\",\"authors\":\"Intekhab Alam, Murshid Kamal, Mohammad Tariq Intezar, Saqib Showkat Wani, Imran Alam\",\"doi\":\"10.1007/s40745-022-00453-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The key assumption in accelerated life testing is that the mathematical model concerning the lifetime of the item and the stress is known or can be assumed. In several situations, such life-stress relationships are not known and cannot be assumed, i.e. accelerated life testing information cannot be extrapolated to use situation. So, in such cases, a partially accelerated life test is a more appropriate testing method to be executed for which tested objects are subjected to both normal and accelerated circumstances. Due to continual improvement in manufacturing design, it is more difficult to obtain information about the lifetime of products or materials with high reliability at the time of testing under normal conditions. An approach to accelerate failures is the step-stress partially accelerated life test which increases the load applied to the goods in a particular discrete sequence. In this study, the maximum likelihood estimators of inverse the generalized inverse Lindley distribution parameters and the acceleration factor are investigated in a step-stress partially accelerated life test model utilizing two various types of progressively hybrid censoring systems. Furthermore, the performance of the model parameter estimators with the two progressive hybrid censoring schemes is analyzed and compared in terms of biases and mean squared errors using a Monte Carlo simulation approach.</p></div>\",\"PeriodicalId\":36280,\"journal\":{\"name\":\"Annals of Data Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Data Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s40745-022-00453-1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Decision Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Data Science","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s40745-022-00453-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Decision Sciences","Score":null,"Total":0}
Statistical Analysis from the Generalized Inverse Lindley Distribution with Adaptive Type-II Progressively Hybrid Censoring Scheme
The key assumption in accelerated life testing is that the mathematical model concerning the lifetime of the item and the stress is known or can be assumed. In several situations, such life-stress relationships are not known and cannot be assumed, i.e. accelerated life testing information cannot be extrapolated to use situation. So, in such cases, a partially accelerated life test is a more appropriate testing method to be executed for which tested objects are subjected to both normal and accelerated circumstances. Due to continual improvement in manufacturing design, it is more difficult to obtain information about the lifetime of products or materials with high reliability at the time of testing under normal conditions. An approach to accelerate failures is the step-stress partially accelerated life test which increases the load applied to the goods in a particular discrete sequence. In this study, the maximum likelihood estimators of inverse the generalized inverse Lindley distribution parameters and the acceleration factor are investigated in a step-stress partially accelerated life test model utilizing two various types of progressively hybrid censoring systems. Furthermore, the performance of the model parameter estimators with the two progressive hybrid censoring schemes is analyzed and compared in terms of biases and mean squared errors using a Monte Carlo simulation approach.
期刊介绍:
Annals of Data Science (ADS) publishes cutting-edge research findings, experimental results and case studies of data science. Although Data Science is regarded as an interdisciplinary field of using mathematics, statistics, databases, data mining, high-performance computing, knowledge management and virtualization to discover knowledge from Big Data, it should have its own scientific contents, such as axioms, laws and rules, which are fundamentally important for experts in different fields to explore their own interests from Big Data. ADS encourages contributors to address such challenging problems at this exchange platform. At present, how to discover knowledge from heterogeneous data under Big Data environment needs to be addressed. ADS is a series of volumes edited by either the editorial office or guest editors. Guest editors will be responsible for call-for-papers and the review process for high-quality contributions in their volumes.