{"title":"计算动力学模型的精确非线性约简","authors":"Antonio Jiménez-Pastor, G. Pogudin","doi":"10.1145/3572867.3572869","DOIUrl":null,"url":null,"abstract":"Dynamical systems are commonly used to represent real-world processes. Model reduction techniques are among the core tools for studying dynamical systems models, they allow to reduce the study of a model to a simpler one. In this poster, we present an algorithm for computing exact nonlinear reductions, that is, a set of new rational function macro-variables which satisfy a self-consistent ODE system with the dynamics defined by algebraic functions. We report reductions found by the algorithm in models from the literature.","PeriodicalId":41965,"journal":{"name":"ACM Communications in Computer Algebra","volume":"56 1","pages":"25 - 31"},"PeriodicalIF":0.4000,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Computing exact nonlinear reductions of dynamical models\",\"authors\":\"Antonio Jiménez-Pastor, G. Pogudin\",\"doi\":\"10.1145/3572867.3572869\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Dynamical systems are commonly used to represent real-world processes. Model reduction techniques are among the core tools for studying dynamical systems models, they allow to reduce the study of a model to a simpler one. In this poster, we present an algorithm for computing exact nonlinear reductions, that is, a set of new rational function macro-variables which satisfy a self-consistent ODE system with the dynamics defined by algebraic functions. We report reductions found by the algorithm in models from the literature.\",\"PeriodicalId\":41965,\"journal\":{\"name\":\"ACM Communications in Computer Algebra\",\"volume\":\"56 1\",\"pages\":\"25 - 31\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2022-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Communications in Computer Algebra\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3572867.3572869\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Communications in Computer Algebra","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3572867.3572869","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Computing exact nonlinear reductions of dynamical models
Dynamical systems are commonly used to represent real-world processes. Model reduction techniques are among the core tools for studying dynamical systems models, they allow to reduce the study of a model to a simpler one. In this poster, we present an algorithm for computing exact nonlinear reductions, that is, a set of new rational function macro-variables which satisfy a self-consistent ODE system with the dynamics defined by algebraic functions. We report reductions found by the algorithm in models from the literature.