具有任意复指数的整个多重Dirichlet级数的Wiman型不等式

Q3 Mathematics
A. Kuryliak
{"title":"具有任意复指数的整个多重Dirichlet级数的Wiman型不等式","authors":"A. Kuryliak","doi":"10.30970/ms.59.2.178-186","DOIUrl":null,"url":null,"abstract":"It is proved analogues of the classical Wiman's inequality} for  the class $\\mathcal{D}$ of absolutely convergents in the whole complex plane $\\mathbb{C}^p$ (entire) Dirichlet series of the form $\\displaystyle F(z)=\\sum\\limits_{\\|n\\|=0}^{+\\infty} a_ne^{(z,\\lambda_n)}$ with such a sequence of exponents $(\\lambda_n)$ that $\\{\\lambda_n\\colon n\\in\\mathbb{Z}^p\\}\\subset \\mathbb{C}^p$ and $\\lambda_n\\not=\\lambda_m$ for all $n\\not= m$. For $F\\in\\mathcal{D}$ and $z\\in\\mathbb{C}^p\\setminus\\{0\\}$ we denote  \n$\\mathfrak{M}(z,F):=\\sum\\limits_{\\|n\\|=0}^{+\\infty}|a_n|e^{\\Re(z,\\lambda_n)},\\quad\\mu(z,F):=\\sup\\{|a_n|e^{\\mathop{\\rm Re}(z,\\lambda_n)}\\colon n\\in\\mathbb{Z}^ p_+\\},$ \n$(m_k)_{k\\geq 0}$ is $(\\mu_{k})_{k\\geq 0}$ the sequence $(-\\ln|a_{n}|)_{n\\in\\mathbb{Z}^p_+}$ arranged by non-decreasing. \nThe  main result of the paper: Let $F\\in \\mathcal{D}.$ If $(\\exists \\alpha > 0)\\colon$ $\\int\\nolimits_{t_0}^{+\\infty}t^{-2}{(n_1(t))^{\\alpha}}dt<+\\infty,$  \n$n_1(t)\\overset{def}=\\sum\\nolimits_{\\mu_n\\leq t} 1,\\quad t_0>0,$ then there exists a set $E\\subset\\gamma_{+}(F),$\\ such that \n$\\tau_{2p}(E\\cap\\gamma_{+}(F))=\\int_{E\\cap\\gamma_{+}(F)}|z|^{-2p}dxdy\\leq C_p, z=x+iy\\in\\mathbb{C}^p,$  \nand relation $\\mathfrak{M}(z,F)= o(\\mu(z,F)\\ln^{1/\\alpha} \\mu(z,F))$ holds as $z\\to \\infty$\\ $(z\\in \\gamma_R\\setminus E)$ for each $R>0$, where \n$\\gamma_R=\\Big\\{z\\in\\mathbb{C}^p\\setminus\\{0\\}\\colon\\ K_F(z)\\leq R \\Big\\},\\quad K_F(z)=\\sup\\Big\\{\\frac1{\\Phi_z( t)}\\int^{ t}_0 \\frac {{\\Phi_z}(u)}{u} du\\colon\\ t \\geq t_0\\Big\\},$ $\\gamma(F)=\\{z\\in\\mathbb{C}\\colon \\ \\lim\\limits_{t\\to +\\infty}\\Phi_z(t)=+\\infty\\},\\quad \\gamma_+(F)=\\mathop{\\cup}_{R>0}\\gamma_R$, $\\Phi_z(t)=\\frac1{t}\\ln\\mu(tz,F)$. In general, under the specified conditions, the obtained inequality is exact.","PeriodicalId":37555,"journal":{"name":"Matematychni Studii","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Wiman’s type inequality for entire multiple Dirichlet series with arbitrary complex exponents\",\"authors\":\"A. Kuryliak\",\"doi\":\"10.30970/ms.59.2.178-186\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"It is proved analogues of the classical Wiman's inequality} for  the class $\\\\mathcal{D}$ of absolutely convergents in the whole complex plane $\\\\mathbb{C}^p$ (entire) Dirichlet series of the form $\\\\displaystyle F(z)=\\\\sum\\\\limits_{\\\\|n\\\\|=0}^{+\\\\infty} a_ne^{(z,\\\\lambda_n)}$ with such a sequence of exponents $(\\\\lambda_n)$ that $\\\\{\\\\lambda_n\\\\colon n\\\\in\\\\mathbb{Z}^p\\\\}\\\\subset \\\\mathbb{C}^p$ and $\\\\lambda_n\\\\not=\\\\lambda_m$ for all $n\\\\not= m$. For $F\\\\in\\\\mathcal{D}$ and $z\\\\in\\\\mathbb{C}^p\\\\setminus\\\\{0\\\\}$ we denote  \\n$\\\\mathfrak{M}(z,F):=\\\\sum\\\\limits_{\\\\|n\\\\|=0}^{+\\\\infty}|a_n|e^{\\\\Re(z,\\\\lambda_n)},\\\\quad\\\\mu(z,F):=\\\\sup\\\\{|a_n|e^{\\\\mathop{\\\\rm Re}(z,\\\\lambda_n)}\\\\colon n\\\\in\\\\mathbb{Z}^ p_+\\\\},$ \\n$(m_k)_{k\\\\geq 0}$ is $(\\\\mu_{k})_{k\\\\geq 0}$ the sequence $(-\\\\ln|a_{n}|)_{n\\\\in\\\\mathbb{Z}^p_+}$ arranged by non-decreasing. \\nThe  main result of the paper: Let $F\\\\in \\\\mathcal{D}.$ If $(\\\\exists \\\\alpha > 0)\\\\colon$ $\\\\int\\\\nolimits_{t_0}^{+\\\\infty}t^{-2}{(n_1(t))^{\\\\alpha}}dt<+\\\\infty,$  \\n$n_1(t)\\\\overset{def}=\\\\sum\\\\nolimits_{\\\\mu_n\\\\leq t} 1,\\\\quad t_0>0,$ then there exists a set $E\\\\subset\\\\gamma_{+}(F),$\\\\ such that \\n$\\\\tau_{2p}(E\\\\cap\\\\gamma_{+}(F))=\\\\int_{E\\\\cap\\\\gamma_{+}(F)}|z|^{-2p}dxdy\\\\leq C_p, z=x+iy\\\\in\\\\mathbb{C}^p,$  \\nand relation $\\\\mathfrak{M}(z,F)= o(\\\\mu(z,F)\\\\ln^{1/\\\\alpha} \\\\mu(z,F))$ holds as $z\\\\to \\\\infty$\\\\ $(z\\\\in \\\\gamma_R\\\\setminus E)$ for each $R>0$, where \\n$\\\\gamma_R=\\\\Big\\\\{z\\\\in\\\\mathbb{C}^p\\\\setminus\\\\{0\\\\}\\\\colon\\\\ K_F(z)\\\\leq R \\\\Big\\\\},\\\\quad K_F(z)=\\\\sup\\\\Big\\\\{\\\\frac1{\\\\Phi_z( t)}\\\\int^{ t}_0 \\\\frac {{\\\\Phi_z}(u)}{u} du\\\\colon\\\\ t \\\\geq t_0\\\\Big\\\\},$ $\\\\gamma(F)=\\\\{z\\\\in\\\\mathbb{C}\\\\colon \\\\ \\\\lim\\\\limits_{t\\\\to +\\\\infty}\\\\Phi_z(t)=+\\\\infty\\\\},\\\\quad \\\\gamma_+(F)=\\\\mathop{\\\\cup}_{R>0}\\\\gamma_R$, $\\\\Phi_z(t)=\\\\frac1{t}\\\\ln\\\\mu(tz,F)$. In general, under the specified conditions, the obtained inequality is exact.\",\"PeriodicalId\":37555,\"journal\":{\"name\":\"Matematychni Studii\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Matematychni Studii\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.30970/ms.59.2.178-186\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Matematychni Studii","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30970/ms.59.2.178-186","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

它被证明是经典的维曼不等式的类似物 $\mathcal{D}$ 在整个复平面上绝对收敛 $\mathbb{C}^p$ (整个)狄利克雷级数的形式 $\displaystyle F(z)=\sum\limits_{\|n\|=0}^{+\infty} a_ne^{(z,\lambda_n)}$ 有这样一个指数序列 $(\lambda_n)$ 那$\{\lambda_n\colon n\in\mathbb{Z}^p\}\subset \mathbb{C}^p$ 和 $\lambda_n\not=\lambda_m$ 对所有人 $n\not= m$. 因为 $F\in\mathcal{D}$ 和 $z\in\mathbb{C}^p\setminus\{0\}$ 我们表示 $\mathfrak{M}(z,F):=\sum\limits_{\|n\|=0}^{+\infty}|a_n|e^{\Re(z,\lambda_n)},\quad\mu(z,F):=\sup\{|a_n|e^{\mathop{\rm Re}(z,\lambda_n)}\colon n\in\mathbb{Z}^ p_+\},$ $(m_k)_{k\geq 0}$ 是 $(\mu_{k})_{k\geq 0}$ 顺序 $(-\ln|a_{n}|)_{n\in\mathbb{Z}^p_+}$ 按非递减排列。本文的主要结论是:让 $F\in \mathcal{D}.$ 如果 $(\exists \alpha > 0)\colon$ $\int\nolimits_{t_0}^{+\infty}t^{-2}{(n_1(t))^{\alpha}}dt0,$ 那么就存在一个集合 $E\subset\gamma_{+}(F),$ 这样 $\tau_{2p}(E\cap\gamma_{+}(F))=\int_{E\cap\gamma_{+}(F)}|z|^{-2p}dxdy\leq C_p, z=x+iy\in\mathbb{C}^p,$与关系 $\mathfrak{M}(z,F)= o(\mu(z,F)\ln^{1/\alpha} \mu(z,F))$ 保持为 $z\to \infty$ $(z\in \gamma_R\setminus E)$ 对于每一个 $R>0$,其中 $\gamma_R=\Big\{z\in\mathbb{C}^p\setminus\{0\}\colon\ K_F(z)\leq R \Big\},\quad K_F(z)=\sup\Big\{\frac1{\Phi_z( t)}\int^{ t}_0 \frac {{\Phi_z}(u)}{u} du\colon\ t \geq t_0\Big\},$ $\gamma(F)=\{z\in\mathbb{C}\colon \ \lim\limits_{t\to +\infty}\Phi_z(t)=+\infty\},\quad \gamma_+(F)=\mathop{\cup}_{R>0}\gamma_R$, $\Phi_z(t)=\frac1{t}\ln\mu(tz,F)$. 一般来说,在一定条件下,所得不等式是精确的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Wiman’s type inequality for entire multiple Dirichlet series with arbitrary complex exponents
It is proved analogues of the classical Wiman's inequality} for  the class $\mathcal{D}$ of absolutely convergents in the whole complex plane $\mathbb{C}^p$ (entire) Dirichlet series of the form $\displaystyle F(z)=\sum\limits_{\|n\|=0}^{+\infty} a_ne^{(z,\lambda_n)}$ with such a sequence of exponents $(\lambda_n)$ that $\{\lambda_n\colon n\in\mathbb{Z}^p\}\subset \mathbb{C}^p$ and $\lambda_n\not=\lambda_m$ for all $n\not= m$. For $F\in\mathcal{D}$ and $z\in\mathbb{C}^p\setminus\{0\}$ we denote  $\mathfrak{M}(z,F):=\sum\limits_{\|n\|=0}^{+\infty}|a_n|e^{\Re(z,\lambda_n)},\quad\mu(z,F):=\sup\{|a_n|e^{\mathop{\rm Re}(z,\lambda_n)}\colon n\in\mathbb{Z}^ p_+\},$ $(m_k)_{k\geq 0}$ is $(\mu_{k})_{k\geq 0}$ the sequence $(-\ln|a_{n}|)_{n\in\mathbb{Z}^p_+}$ arranged by non-decreasing. The  main result of the paper: Let $F\in \mathcal{D}.$ If $(\exists \alpha > 0)\colon$ $\int\nolimits_{t_0}^{+\infty}t^{-2}{(n_1(t))^{\alpha}}dt<+\infty,$  $n_1(t)\overset{def}=\sum\nolimits_{\mu_n\leq t} 1,\quad t_0>0,$ then there exists a set $E\subset\gamma_{+}(F),$\ such that $\tau_{2p}(E\cap\gamma_{+}(F))=\int_{E\cap\gamma_{+}(F)}|z|^{-2p}dxdy\leq C_p, z=x+iy\in\mathbb{C}^p,$  and relation $\mathfrak{M}(z,F)= o(\mu(z,F)\ln^{1/\alpha} \mu(z,F))$ holds as $z\to \infty$\ $(z\in \gamma_R\setminus E)$ for each $R>0$, where $\gamma_R=\Big\{z\in\mathbb{C}^p\setminus\{0\}\colon\ K_F(z)\leq R \Big\},\quad K_F(z)=\sup\Big\{\frac1{\Phi_z( t)}\int^{ t}_0 \frac {{\Phi_z}(u)}{u} du\colon\ t \geq t_0\Big\},$ $\gamma(F)=\{z\in\mathbb{C}\colon \ \lim\limits_{t\to +\infty}\Phi_z(t)=+\infty\},\quad \gamma_+(F)=\mathop{\cup}_{R>0}\gamma_R$, $\Phi_z(t)=\frac1{t}\ln\mu(tz,F)$. In general, under the specified conditions, the obtained inequality is exact.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Matematychni Studii
Matematychni Studii Mathematics-Mathematics (all)
CiteScore
1.00
自引率
0.00%
发文量
38
期刊介绍: Journal is devoted to research in all fields of mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信