{"title":"非对称拉普拉斯分布规范下同步回归分位数的全贝叶斯估计","authors":"Josephine Merhi Bleik","doi":"10.1155/2019/8610723","DOIUrl":null,"url":null,"abstract":"In this paper, we are interested in estimating several quantiles simultaneously in a regression context via the Bayesian approach. Assuming that the error term has an asymmetric Laplace distribution and using the relation between two distinct quantiles of this distribution, we propose a simple fully Bayesian method that satisfies the noncrossing property of quantiles. For implementation, we use Metropolis-Hastings within Gibbs algorithm to sample unknown parameters from their full conditional distribution. The performance and the competitiveness of the underlying method with other alternatives are shown in simulated examples.","PeriodicalId":44760,"journal":{"name":"Journal of Probability and Statistics","volume":" ","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2019-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2019/8610723","citationCount":"4","resultStr":"{\"title\":\"Fully Bayesian Estimation of Simultaneous Regression Quantiles under Asymmetric Laplace Distribution Specification\",\"authors\":\"Josephine Merhi Bleik\",\"doi\":\"10.1155/2019/8610723\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we are interested in estimating several quantiles simultaneously in a regression context via the Bayesian approach. Assuming that the error term has an asymmetric Laplace distribution and using the relation between two distinct quantiles of this distribution, we propose a simple fully Bayesian method that satisfies the noncrossing property of quantiles. For implementation, we use Metropolis-Hastings within Gibbs algorithm to sample unknown parameters from their full conditional distribution. The performance and the competitiveness of the underlying method with other alternatives are shown in simulated examples.\",\"PeriodicalId\":44760,\"journal\":{\"name\":\"Journal of Probability and Statistics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2019-06-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1155/2019/8610723\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Probability and Statistics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2019/8610723\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Probability and Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2019/8610723","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
Fully Bayesian Estimation of Simultaneous Regression Quantiles under Asymmetric Laplace Distribution Specification
In this paper, we are interested in estimating several quantiles simultaneously in a regression context via the Bayesian approach. Assuming that the error term has an asymmetric Laplace distribution and using the relation between two distinct quantiles of this distribution, we propose a simple fully Bayesian method that satisfies the noncrossing property of quantiles. For implementation, we use Metropolis-Hastings within Gibbs algorithm to sample unknown parameters from their full conditional distribution. The performance and the competitiveness of the underlying method with other alternatives are shown in simulated examples.