椭圆方程的正则解

IF 0.8 4区 数学 Q2 MATHEMATICS
A. Castro, Jon Jacobsen
{"title":"椭圆方程的正则解","authors":"A. Castro, Jon Jacobsen","doi":"10.58997/ejde.sp.02.c2","DOIUrl":null,"url":null,"abstract":"A review of results and techniques on the existence of regular radial solutions to second order elliptic boundary value problems driven by  linear and quasilinear operators is presented. Of particular interest are results where the solvability of a given  elliptic problem can be analyzed by the relationship between the  spectrum of the operator and the behavior of the nonlinearity near infinity and at zero.  Energy arguments and Pohozaev type identities are used extensively in that analysis. An appendix with a proof of the contraction mapping  principle best suited for using continuous dependence to ordinary  differential equations on initial conditions is presented. Another appendix on the phase plane analysis as needed to take advantage  of initial conditions is also included. For studies on singular solutions  the reader is referred to Ardila et al., Milan J. Math (2014)  and references therein.\nSee also https://ejde.math.txstate.edu/special/02/c2/abstr.html","PeriodicalId":49213,"journal":{"name":"Electronic Journal of Differential Equations","volume":" ","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2023-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Regular solutions to elliptic equations\",\"authors\":\"A. Castro, Jon Jacobsen\",\"doi\":\"10.58997/ejde.sp.02.c2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A review of results and techniques on the existence of regular radial solutions to second order elliptic boundary value problems driven by  linear and quasilinear operators is presented. Of particular interest are results where the solvability of a given  elliptic problem can be analyzed by the relationship between the  spectrum of the operator and the behavior of the nonlinearity near infinity and at zero.  Energy arguments and Pohozaev type identities are used extensively in that analysis. An appendix with a proof of the contraction mapping  principle best suited for using continuous dependence to ordinary  differential equations on initial conditions is presented. Another appendix on the phase plane analysis as needed to take advantage  of initial conditions is also included. For studies on singular solutions  the reader is referred to Ardila et al., Milan J. Math (2014)  and references therein.\\nSee also https://ejde.math.txstate.edu/special/02/c2/abstr.html\",\"PeriodicalId\":49213,\"journal\":{\"name\":\"Electronic Journal of Differential Equations\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2023-03-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electronic Journal of Differential Equations\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.58997/ejde.sp.02.c2\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Journal of Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.58997/ejde.sp.02.c2","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

摘要综述了二阶椭圆型边值问题在线性算子和拟线性算子驱动下正则径向解的存在性的研究结果和技术。特别令人感兴趣的结果是,给定椭圆问题的可解性可以通过算子的谱与非线性在无穷近处和零处的行为之间的关系来分析。能量论证和波霍扎耶夫类型同一性在该分析中被广泛使用。本文给出了最适合于在初始条件下使用常微分方程连续相关的收缩映射原理的证明。另一个附录关于相平面分析,需要利用初始条件也包括在内。对于奇异解的研究,读者可参考Ardila et al., Milan J. Math(2014)及其参考文献。参见https://ejde.math.txstate.edu/special/02/c2/abstr.html
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Regular solutions to elliptic equations
A review of results and techniques on the existence of regular radial solutions to second order elliptic boundary value problems driven by  linear and quasilinear operators is presented. Of particular interest are results where the solvability of a given  elliptic problem can be analyzed by the relationship between the  spectrum of the operator and the behavior of the nonlinearity near infinity and at zero.  Energy arguments and Pohozaev type identities are used extensively in that analysis. An appendix with a proof of the contraction mapping  principle best suited for using continuous dependence to ordinary  differential equations on initial conditions is presented. Another appendix on the phase plane analysis as needed to take advantage  of initial conditions is also included. For studies on singular solutions  the reader is referred to Ardila et al., Milan J. Math (2014)  and references therein. See also https://ejde.math.txstate.edu/special/02/c2/abstr.html
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Electronic Journal of Differential Equations
Electronic Journal of Differential Equations MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
1.50
自引率
14.30%
发文量
1
审稿时长
3 months
期刊介绍: All topics on differential equations and their applications (ODEs, PDEs, integral equations, delay equations, functional differential equations, etc.) will be considered for publication in Electronic Journal of Differential Equations.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信