CXCR4介导IGF-1R信号在啮齿类动物骨稳态和骨折修复中的作用。

Bone Pub Date : 2022-11-01 DOI:10.2139/ssrn.4239423
A. Esposito, M. Klüppel, Brittany M. Wilson, S. K. Meka, A. Spagnoli
{"title":"CXCR4介导IGF-1R信号在啮齿类动物骨稳态和骨折修复中的作用。","authors":"A. Esposito, M. Klüppel, Brittany M. Wilson, S. K. Meka, A. Spagnoli","doi":"10.2139/ssrn.4239423","DOIUrl":null,"url":null,"abstract":"Non-union fractures have considerable clinical and economic burdens and yet the underlying pathogenesis remains largely undetermined. The fracture healing process involves cellular differentiation, callus formation and remodeling, and implies the recruitment and differentiation of mesenchymal stem cells that are not fully characterized. C-X-C chemokine receptor 4 (CXCR4) and Insulin-like growth factor 1 receptor (IGF-1R) are expressed in the fracture callus, but their interactions still remain elusive. We hypothesized that the regulation of CXCR4 by IGF-1R signaling is essential to maintain the bone homeostasis and to promote fracture repair. By using a combination of in vivo and in vitro approaches, we found that conditional ablation of IGF-1R in osteochondroprogenitors led to defects in bone formation and mineralization that associated with altered expression of CXCR4 by a discrete population of endosteal cells. These defects were corrected by AMD3100 (a CXCR4 antagonist). Furthermore, we found that the inducible ablation of IGF-1R in osteochondroprogenitors led to fracture healing failure, that associated with an altered expression of CXCR4. In vivo AMD3100 treatment restored fracture healing and normalized CXCR4 expression. Moreover, we determined that these effects were mediated through the IGF-1R/Insulin receptor substrate 1 (IRS-1) signaling pathway. Taken together, our studies identified a novel population of endosteal cells that is functionally regulated through the modulation of CXCR4 by IGF-1R signaling, and such control is essential in bone homeostasis and fracture healing. Knowledge gained from these studies has the potential to accelerate the development of novel therapeutic interventions by targeting CXCR4 signaling to treat non-unions.","PeriodicalId":93913,"journal":{"name":"Bone","volume":"1 1","pages":"116600"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"CXCR4 mediates the effects of IGF-1R signaling in rodent bone homeostasis and fracture repair.\",\"authors\":\"A. Esposito, M. Klüppel, Brittany M. Wilson, S. K. Meka, A. Spagnoli\",\"doi\":\"10.2139/ssrn.4239423\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Non-union fractures have considerable clinical and economic burdens and yet the underlying pathogenesis remains largely undetermined. The fracture healing process involves cellular differentiation, callus formation and remodeling, and implies the recruitment and differentiation of mesenchymal stem cells that are not fully characterized. C-X-C chemokine receptor 4 (CXCR4) and Insulin-like growth factor 1 receptor (IGF-1R) are expressed in the fracture callus, but their interactions still remain elusive. We hypothesized that the regulation of CXCR4 by IGF-1R signaling is essential to maintain the bone homeostasis and to promote fracture repair. By using a combination of in vivo and in vitro approaches, we found that conditional ablation of IGF-1R in osteochondroprogenitors led to defects in bone formation and mineralization that associated with altered expression of CXCR4 by a discrete population of endosteal cells. These defects were corrected by AMD3100 (a CXCR4 antagonist). Furthermore, we found that the inducible ablation of IGF-1R in osteochondroprogenitors led to fracture healing failure, that associated with an altered expression of CXCR4. In vivo AMD3100 treatment restored fracture healing and normalized CXCR4 expression. Moreover, we determined that these effects were mediated through the IGF-1R/Insulin receptor substrate 1 (IRS-1) signaling pathway. Taken together, our studies identified a novel population of endosteal cells that is functionally regulated through the modulation of CXCR4 by IGF-1R signaling, and such control is essential in bone homeostasis and fracture healing. Knowledge gained from these studies has the potential to accelerate the development of novel therapeutic interventions by targeting CXCR4 signaling to treat non-unions.\",\"PeriodicalId\":93913,\"journal\":{\"name\":\"Bone\",\"volume\":\"1 1\",\"pages\":\"116600\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bone\",\"FirstCategoryId\":\"0\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.4239423\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bone","FirstCategoryId":"0","ListUrlMain":"https://doi.org/10.2139/ssrn.4239423","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

骨折不愈合有相当大的临床和经济负担,但潜在的发病机制仍未确定。骨折愈合过程包括细胞分化、愈伤组织形成和重塑,并暗示了间充质干细胞的募集和分化,但尚未完全确定。C-X-C趋化因子受体4 (CXCR4)和胰岛素样生长因子1受体(IGF-1R)在骨折愈伤组织中表达,但它们之间的相互作用尚不清楚。我们假设IGF-1R信号对CXCR4的调控对于维持骨稳态和促进骨折修复至关重要。通过结合体内和体外方法,我们发现骨软骨祖细胞中IGF-1R的条件消融导致骨形成和矿化缺陷,这与离散的内皮细胞群体中CXCR4表达的改变有关。这些缺陷被AMD3100(一种CXCR4拮抗剂)纠正。此外,我们发现骨软骨祖细胞中IGF-1R的诱导消融导致骨折愈合失败,这与CXCR4的表达改变有关。体内AMD3100治疗可恢复骨折愈合并使CXCR4表达正常化。此外,我们确定这些作用是通过IGF-1R/胰岛素受体底物1 (IRS-1)信号通路介导的。综上所述,我们的研究发现了一种新的内皮细胞群,通过IGF-1R信号调节CXCR4在功能上进行调节,这种控制在骨稳态和骨折愈合中是必不可少的。从这些研究中获得的知识有可能通过靶向CXCR4信号治疗骨不连来加速新型治疗干预措施的发展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
CXCR4 mediates the effects of IGF-1R signaling in rodent bone homeostasis and fracture repair.
Non-union fractures have considerable clinical and economic burdens and yet the underlying pathogenesis remains largely undetermined. The fracture healing process involves cellular differentiation, callus formation and remodeling, and implies the recruitment and differentiation of mesenchymal stem cells that are not fully characterized. C-X-C chemokine receptor 4 (CXCR4) and Insulin-like growth factor 1 receptor (IGF-1R) are expressed in the fracture callus, but their interactions still remain elusive. We hypothesized that the regulation of CXCR4 by IGF-1R signaling is essential to maintain the bone homeostasis and to promote fracture repair. By using a combination of in vivo and in vitro approaches, we found that conditional ablation of IGF-1R in osteochondroprogenitors led to defects in bone formation and mineralization that associated with altered expression of CXCR4 by a discrete population of endosteal cells. These defects were corrected by AMD3100 (a CXCR4 antagonist). Furthermore, we found that the inducible ablation of IGF-1R in osteochondroprogenitors led to fracture healing failure, that associated with an altered expression of CXCR4. In vivo AMD3100 treatment restored fracture healing and normalized CXCR4 expression. Moreover, we determined that these effects were mediated through the IGF-1R/Insulin receptor substrate 1 (IRS-1) signaling pathway. Taken together, our studies identified a novel population of endosteal cells that is functionally regulated through the modulation of CXCR4 by IGF-1R signaling, and such control is essential in bone homeostasis and fracture healing. Knowledge gained from these studies has the potential to accelerate the development of novel therapeutic interventions by targeting CXCR4 signaling to treat non-unions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信