一维Deneubourg趋化系统的全局吸引子和Lyapunov函数

IF 0.5 4区 数学 Q3 MATHEMATICS
Kanako Noda, Koichi Osaki
{"title":"一维Deneubourg趋化系统的全局吸引子和Lyapunov函数","authors":"Kanako Noda, Koichi Osaki","doi":"10.32917/HMJ/1564106547","DOIUrl":null,"url":null,"abstract":"A bstract . We study the global-in-time existence and the asymptotic behavior of solutions to a one-dimensional chemotaxis system presented by Deneubourg (Insectes Sociaux 24 (1977)). The system models the self-organized nest construction process of social insects. In the limit as a time-scale coe‰cient tends to 0, the Deneubourg model reduces to a parabolic-parabolic Keller-Segel system with linear degradation. We first show the global-in-time existence of solutions. We next define the dynamical system of solutions and construct the global attractor. In addition, under the assumption of a large resting rate of worker insects, we construct a Lyapunov functional for the unique homogeneous equilibrium, which indicates that the global attractor consists only of the equilibrium.","PeriodicalId":55054,"journal":{"name":"Hiroshima Mathematical Journal","volume":"1 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Global attractor and Lyapunov function for one-dimensional Deneubourg chemotaxis system\",\"authors\":\"Kanako Noda, Koichi Osaki\",\"doi\":\"10.32917/HMJ/1564106547\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A bstract . We study the global-in-time existence and the asymptotic behavior of solutions to a one-dimensional chemotaxis system presented by Deneubourg (Insectes Sociaux 24 (1977)). The system models the self-organized nest construction process of social insects. In the limit as a time-scale coe‰cient tends to 0, the Deneubourg model reduces to a parabolic-parabolic Keller-Segel system with linear degradation. We first show the global-in-time existence of solutions. We next define the dynamical system of solutions and construct the global attractor. In addition, under the assumption of a large resting rate of worker insects, we construct a Lyapunov functional for the unique homogeneous equilibrium, which indicates that the global attractor consists only of the equilibrium.\",\"PeriodicalId\":55054,\"journal\":{\"name\":\"Hiroshima Mathematical Journal\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2019-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Hiroshima Mathematical Journal\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.32917/HMJ/1564106547\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Hiroshima Mathematical Journal","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.32917/HMJ/1564106547","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 6

摘要

摘要。我们研究了Deneubourg(Insectes Sociaux 24(1977))提出的一维趋化系统解的全局时间存在性和渐近行为。该系统模拟了群居昆虫自组织的巢穴构建过程。在时间尺度coe‰cient趋于0的极限下,Deneubourg模型简化为具有线性退化的抛物型Keller-Segel系统。我们首先展示了解决方案的全局时间存在性。接下来,我们定义解的动力系统,并构造全局吸引子。此外,在工作者昆虫有较大静息率的假设下,我们构造了唯一齐次平衡的李雅普诺夫泛函,这表明全局吸引子只由平衡组成。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Global attractor and Lyapunov function for one-dimensional Deneubourg chemotaxis system
A bstract . We study the global-in-time existence and the asymptotic behavior of solutions to a one-dimensional chemotaxis system presented by Deneubourg (Insectes Sociaux 24 (1977)). The system models the self-organized nest construction process of social insects. In the limit as a time-scale coe‰cient tends to 0, the Deneubourg model reduces to a parabolic-parabolic Keller-Segel system with linear degradation. We first show the global-in-time existence of solutions. We next define the dynamical system of solutions and construct the global attractor. In addition, under the assumption of a large resting rate of worker insects, we construct a Lyapunov functional for the unique homogeneous equilibrium, which indicates that the global attractor consists only of the equilibrium.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.60
自引率
0.00%
发文量
12
审稿时长
>12 weeks
期刊介绍: Hiroshima Mathematical Journal (HMJ) is a continuation of Journal of Science of the Hiroshima University, Series A, Vol. 1 - 24 (1930 - 1960), and Journal of Science of the Hiroshima University, Series A - I , Vol. 25 - 34 (1961 - 1970). Starting with Volume 4 (1974), each volume of HMJ consists of three numbers annually. This journal publishes original papers in pure and applied mathematics. HMJ is an (electronically) open access journal from Volume 36, Number 1.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信