一维Deneubourg趋化系统的全局吸引子和Lyapunov函数

Pub Date : 2019-07-01 DOI:10.32917/HMJ/1564106547
Kanako Noda, Koichi Osaki
{"title":"一维Deneubourg趋化系统的全局吸引子和Lyapunov函数","authors":"Kanako Noda, Koichi Osaki","doi":"10.32917/HMJ/1564106547","DOIUrl":null,"url":null,"abstract":"A bstract . We study the global-in-time existence and the asymptotic behavior of solutions to a one-dimensional chemotaxis system presented by Deneubourg (Insectes Sociaux 24 (1977)). The system models the self-organized nest construction process of social insects. In the limit as a time-scale coe‰cient tends to 0, the Deneubourg model reduces to a parabolic-parabolic Keller-Segel system with linear degradation. We first show the global-in-time existence of solutions. We next define the dynamical system of solutions and construct the global attractor. In addition, under the assumption of a large resting rate of worker insects, we construct a Lyapunov functional for the unique homogeneous equilibrium, which indicates that the global attractor consists only of the equilibrium.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Global attractor and Lyapunov function for one-dimensional Deneubourg chemotaxis system\",\"authors\":\"Kanako Noda, Koichi Osaki\",\"doi\":\"10.32917/HMJ/1564106547\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A bstract . We study the global-in-time existence and the asymptotic behavior of solutions to a one-dimensional chemotaxis system presented by Deneubourg (Insectes Sociaux 24 (1977)). The system models the self-organized nest construction process of social insects. In the limit as a time-scale coe‰cient tends to 0, the Deneubourg model reduces to a parabolic-parabolic Keller-Segel system with linear degradation. We first show the global-in-time existence of solutions. We next define the dynamical system of solutions and construct the global attractor. In addition, under the assumption of a large resting rate of worker insects, we construct a Lyapunov functional for the unique homogeneous equilibrium, which indicates that the global attractor consists only of the equilibrium.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2019-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.32917/HMJ/1564106547\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.32917/HMJ/1564106547","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

摘要。我们研究了Deneubourg(Insectes Sociaux 24(1977))提出的一维趋化系统解的全局时间存在性和渐近行为。该系统模拟了群居昆虫自组织的巢穴构建过程。在时间尺度coe‰cient趋于0的极限下,Deneubourg模型简化为具有线性退化的抛物型Keller-Segel系统。我们首先展示了解决方案的全局时间存在性。接下来,我们定义解的动力系统,并构造全局吸引子。此外,在工作者昆虫有较大静息率的假设下,我们构造了唯一齐次平衡的李雅普诺夫泛函,这表明全局吸引子只由平衡组成。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Global attractor and Lyapunov function for one-dimensional Deneubourg chemotaxis system
A bstract . We study the global-in-time existence and the asymptotic behavior of solutions to a one-dimensional chemotaxis system presented by Deneubourg (Insectes Sociaux 24 (1977)). The system models the self-organized nest construction process of social insects. In the limit as a time-scale coe‰cient tends to 0, the Deneubourg model reduces to a parabolic-parabolic Keller-Segel system with linear degradation. We first show the global-in-time existence of solutions. We next define the dynamical system of solutions and construct the global attractor. In addition, under the assumption of a large resting rate of worker insects, we construct a Lyapunov functional for the unique homogeneous equilibrium, which indicates that the global attractor consists only of the equilibrium.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信