{"title":"关于$\\sum\\frac{1}{p}$的两个子级数的散度,以及de La Vall\\ {e}e Poussin和Landau-Walfis的定理","authors":"G. Reddy, S. Rau, B. Uma","doi":"10.5269/bspm.50820","DOIUrl":null,"url":null,"abstract":"Let $K=Q(\\sqrt{d})$ be a quadratic field with discriminant $d$. It is shown that $\\sum\\limits_{(\\frac{d}{p})=+1,_{p~ prime}}\\frac{1}{p}$ and $\\sum\\limits_{(\\frac{d}{q})=-1,_{q~ prime}}\\frac{1}{q}$ are both divergent. Two different approaches are given to show the divergence: one using the Dedekind Zeta function and the other by Tauberian methods. It is shown that these two divergences are equivalent. It is shown that the divergence is equivalent to $L_{d}(1)\\neq 0$(de la Vall\\'{e}e Poussin's Theorem).We prove that the series $\\sum\\limits_{(\\frac{d}{p})=+1,_{p~ prime}}\\frac{1}{p^{s}}$ and $\\sum\\limits_{(\\frac{d}{q})=-1,_{q~ prime}}\\frac{1}{q^{s}}$ have singularities on all the imaginary axis(analogue of Landau-Walfisz theorem)","PeriodicalId":44941,"journal":{"name":"Boletim Sociedade Paranaense de Matematica","volume":" ","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2022-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the divergence of two subseries $\\\\ldots$] {on the divergence of two subseries of $\\\\sum\\\\frac{1}{p}$, and theorems of de La Vall\\\\'{e}e Poussin and Landau-Walfis\",\"authors\":\"G. Reddy, S. Rau, B. Uma\",\"doi\":\"10.5269/bspm.50820\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $K=Q(\\\\sqrt{d})$ be a quadratic field with discriminant $d$. It is shown that $\\\\sum\\\\limits_{(\\\\frac{d}{p})=+1,_{p~ prime}}\\\\frac{1}{p}$ and $\\\\sum\\\\limits_{(\\\\frac{d}{q})=-1,_{q~ prime}}\\\\frac{1}{q}$ are both divergent. Two different approaches are given to show the divergence: one using the Dedekind Zeta function and the other by Tauberian methods. It is shown that these two divergences are equivalent. It is shown that the divergence is equivalent to $L_{d}(1)\\\\neq 0$(de la Vall\\\\'{e}e Poussin's Theorem).We prove that the series $\\\\sum\\\\limits_{(\\\\frac{d}{p})=+1,_{p~ prime}}\\\\frac{1}{p^{s}}$ and $\\\\sum\\\\limits_{(\\\\frac{d}{q})=-1,_{q~ prime}}\\\\frac{1}{q^{s}}$ have singularities on all the imaginary axis(analogue of Landau-Walfisz theorem)\",\"PeriodicalId\":44941,\"journal\":{\"name\":\"Boletim Sociedade Paranaense de Matematica\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2022-12-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Boletim Sociedade Paranaense de Matematica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5269/bspm.50820\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Boletim Sociedade Paranaense de Matematica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5269/bspm.50820","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
设$K=Q(\sqrt{d})$是具有判别式$d$的二次域。结果表明,$\sum\limits_{(\frac{d}{p})=+1,_{p~prime}}\frac{1}{p}$和$\sum\limits_{。给出了两种不同的方法来显示分歧:一种使用Dedekind-Zeta函数,另一种使用Tauberian方法。结果表明,这两个发散是等价的。结果表明,散度等价于$L_{d}(1)\neq0$(de la Vall){e}ePoussin定理)。我们证明了序列$\sum\limits_{(\frac{d}{p})=+1,_{p~素数}}\frac{1}{p^{s}$和$\sum\limits_{q~素数}}\frag{1}{q^{s}}$在所有虚轴上都具有奇点(类似于Landau-Wallfisz定理)
On the divergence of two subseries $\ldots$] {on the divergence of two subseries of $\sum\frac{1}{p}$, and theorems of de La Vall\'{e}e Poussin and Landau-Walfis
Let $K=Q(\sqrt{d})$ be a quadratic field with discriminant $d$. It is shown that $\sum\limits_{(\frac{d}{p})=+1,_{p~ prime}}\frac{1}{p}$ and $\sum\limits_{(\frac{d}{q})=-1,_{q~ prime}}\frac{1}{q}$ are both divergent. Two different approaches are given to show the divergence: one using the Dedekind Zeta function and the other by Tauberian methods. It is shown that these two divergences are equivalent. It is shown that the divergence is equivalent to $L_{d}(1)\neq 0$(de la Vall\'{e}e Poussin's Theorem).We prove that the series $\sum\limits_{(\frac{d}{p})=+1,_{p~ prime}}\frac{1}{p^{s}}$ and $\sum\limits_{(\frac{d}{q})=-1,_{q~ prime}}\frac{1}{q^{s}}$ have singularities on all the imaginary axis(analogue of Landau-Walfisz theorem)