原油污染土壤中生物炭修复对氮循环细菌和氨单加氧酶活性的影响

Anwuli U. Osadebe, Ibiso W. Davis, C. Ogugbue, G. C. Okpokwasili
{"title":"原油污染土壤中生物炭修复对氮循环细菌和氨单加氧酶活性的影响","authors":"Anwuli U. Osadebe, Ibiso W. Davis, C. Ogugbue, G. C. Okpokwasili","doi":"10.4314/jfas.1217","DOIUrl":null,"url":null,"abstract":"This study adopted an ecosystem services approach to pollution management by investigating the impact of biochar-mediated remediation on soil nitrogen, abundance of nitrogen cycling bacteria and the activity of ammonia monooxygenase (AMO) enzyme in petroleum-polluted soil using two biochar types applied at two treatment levels with monitoring over 15 weeks. The corn cob-derived biochar (CDB), generally, had a stronger restorative effect on soil ammonium nitrogen, nitrate and total organic nitrogen concentrations than the bone-derived biochar (BDB). Both biochar types had a more robust impact on restoration of Nitrosomonas, Nitrobacter and Azotobacter abundance (with the re-establishment of pre-pollution levels) than on Rhizobium and Pseudomonas aeruginosa. Biochar amendment restored the activity of AMO enzyme in the soil by week 15. The CDB (72.4% – 73.7%) showed more effective total petroleum hydrocarbon (TPH) elimination capacity than the BDB (51.1% – 57.7%). Biochar amendments exhibited great potential for restoration of nitrogen cycling while facilitating remediation of petroleum-polluted soils.","PeriodicalId":15885,"journal":{"name":"Journal of Fundamental and Applied Sciences","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Biochar-mediated remediation impacts on nitrogen cycling bacteria and ammonia monooxygenase activity in crude oil polluted soil\",\"authors\":\"Anwuli U. Osadebe, Ibiso W. Davis, C. Ogugbue, G. C. Okpokwasili\",\"doi\":\"10.4314/jfas.1217\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study adopted an ecosystem services approach to pollution management by investigating the impact of biochar-mediated remediation on soil nitrogen, abundance of nitrogen cycling bacteria and the activity of ammonia monooxygenase (AMO) enzyme in petroleum-polluted soil using two biochar types applied at two treatment levels with monitoring over 15 weeks. The corn cob-derived biochar (CDB), generally, had a stronger restorative effect on soil ammonium nitrogen, nitrate and total organic nitrogen concentrations than the bone-derived biochar (BDB). Both biochar types had a more robust impact on restoration of Nitrosomonas, Nitrobacter and Azotobacter abundance (with the re-establishment of pre-pollution levels) than on Rhizobium and Pseudomonas aeruginosa. Biochar amendment restored the activity of AMO enzyme in the soil by week 15. The CDB (72.4% – 73.7%) showed more effective total petroleum hydrocarbon (TPH) elimination capacity than the BDB (51.1% – 57.7%). Biochar amendments exhibited great potential for restoration of nitrogen cycling while facilitating remediation of petroleum-polluted soils.\",\"PeriodicalId\":15885,\"journal\":{\"name\":\"Journal of Fundamental and Applied Sciences\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Fundamental and Applied Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4314/jfas.1217\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Fundamental and Applied Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4314/jfas.1217","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本研究采用生态系统服务方法对石油污染土壤进行污染管理,研究了两种生物炭在两个处理水平下对土壤氮、氮循环细菌丰度和氨单加氧酶(AMO)酶活性的影响。总体而言,玉米芯生物炭对土壤铵态氮、硝态氮和总有机氮的恢复作用强于骨源生物炭。与根瘤菌和铜绿假单胞菌相比,这两种生物炭类型对亚硝化单胞菌、硝化杆菌和固氮细菌丰度的恢复(恢复到污染前水平)的影响更强。在第15周,生物炭处理恢复了土壤中AMO酶的活性。CDB(72.4% ~ 73.7%)比BDB(51.1% ~ 57.7%)更能有效去除总石油烃(TPH)。生物炭在修复石油污染土壤的同时,也显示出巨大的氮循环修复潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Biochar-mediated remediation impacts on nitrogen cycling bacteria and ammonia monooxygenase activity in crude oil polluted soil
This study adopted an ecosystem services approach to pollution management by investigating the impact of biochar-mediated remediation on soil nitrogen, abundance of nitrogen cycling bacteria and the activity of ammonia monooxygenase (AMO) enzyme in petroleum-polluted soil using two biochar types applied at two treatment levels with monitoring over 15 weeks. The corn cob-derived biochar (CDB), generally, had a stronger restorative effect on soil ammonium nitrogen, nitrate and total organic nitrogen concentrations than the bone-derived biochar (BDB). Both biochar types had a more robust impact on restoration of Nitrosomonas, Nitrobacter and Azotobacter abundance (with the re-establishment of pre-pollution levels) than on Rhizobium and Pseudomonas aeruginosa. Biochar amendment restored the activity of AMO enzyme in the soil by week 15. The CDB (72.4% – 73.7%) showed more effective total petroleum hydrocarbon (TPH) elimination capacity than the BDB (51.1% – 57.7%). Biochar amendments exhibited great potential for restoration of nitrogen cycling while facilitating remediation of petroleum-polluted soils.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
审稿时长
16 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信